'A Comparative Evaluation of Quantification Methods', by Tobias Schumacher, Markus Strohmaier, Florian Lemmerich.
http://jmlr.org/papers/v26/21-0241.html
#classifiers #supervised #quantification
'A Comparative Evaluation of Quantification Methods', by Tobias Schumacher, Markus Strohmaier, Florian Lemmerich.
http://jmlr.org/papers/v26/21-0241.html
#classifiers #supervised #quantification
'Efficient and Robust Semi-supervised Estimation of Average Treatment Effect with Partially Annotated Treatment and Response', by Jue Hou, Rajarshi Mukherjee, Tianxi Cai.
http://jmlr.org/papers/v26/23-1587.html
#supervised #annotated #annotate
'Optimizing Data Collection for Machine Learning', by Rafid Mahmood, James Lucas, Jose M. Alvarez, Sanja Fidler, Marc T. Law.
http://jmlr.org/papers/v26/23-0292.html
#supervised #deep #collecting
'Supervised Learning with Evolving Tasks and Performance Guarantees', by Verónica Álvarez, Santiago Mazuelas, Jose A. Lozano.
http://jmlr.org/papers/v26/24-0343.html
#supervised #tasks #classification
'Recursive Estimation of Conditional Kernel Mean Embeddings', by Ambrus Tamás, Balázs Csanád Csáji.
http://jmlr.org/papers/v25/23-0168.html
#embeddings #supervised #estimation
'On Causality in Domain Adaptation and Semi-Supervised Learning: an Information-Theoretic Analysis for Parametric Models', by Xuetong Wu, Mingming Gong, Jonathan H. Manton, Uwe Aickelin, Jingge Zhu.
http://jmlr.org/papers/v25/22-1024.html
#causal #causality #supervised
'Learning from many trajectories', by Stephen Tu, Roy Frostig, Mahdi Soltanolkotabi.
http://jmlr.org/papers/v25/23-1145.html
#trajectories #trajectory #supervised
'An Entropy-Based Model for Hierarchical Learning', by Amir R. Asadi.
http://jmlr.org/papers/v25/23-0096.html
#supervised #hierarchical #multiscale
'Semi-supervised Inference for Block-wise Missing Data without Imputation', by Shanshan Song, Yuanyuan Lin, Yong Zhou.
http://jmlr.org/papers/v25/21-1504.html
#imputation #supervised #neuroimaging
'Distributed Estimation on Semi-Supervised Generalized Linear Model', by Jiyuan Tu, Weidong Liu, Xiaojun Mao.
http://jmlr.org/papers/v25/22-0670.html
#supervised #distributed #estimation
'Sample-efficient Adversarial Imitation Learning', by Dahuin Jung, Hyungyu Lee, Sungroh Yoon.
http://jmlr.org/papers/v25/23-0314.html
#imitation #adversarial #supervised
'On Truthing Issues in Supervised Classification', by Jonathan K. Su.
http://jmlr.org/papers/v25/19-301.html
#classification #classifier #supervised
'Dimensionality Reduction and Wasserstein Stability for Kernel Regression', by Stephan Eckstein, Armin Iske, Mathias Trabs.
http://jmlr.org/papers/v24/22-0303.html
#regression #pca #supervised
'Weisfeiler and Leman go Machine Learning: The Story so far', by Christopher Morris et al.
http://jmlr.org/papers/v24/22-0240.html
#graphs #graph #supervised
'Fair Data Representation for Machine Learning at the Pareto Frontier', by Shizhou Xu, Thomas Strohmer.
http://jmlr.org/papers/v24/22-0005.html
#wasserstein #supervised #fairness
'The Power of Contrast for Feature Learning: A Theoretical Analysis', by Wenlong Ji, Zhun Deng, Ryumei Nakada, James Zou, Linjun Zhang.
http://jmlr.org/papers/v24/21-1501.html
#autoencoders #supervised #generative
'Semi-Supervised Off-Policy Reinforcement Learning and Value Estimation for Dynamic Treatment Regimes', by Aaron Sonabend-W, Nilanjana Laha, Ashwin N. Ananthakrishnan, Tianxi Cai, Rajarshi Mukherjee.
http://jmlr.org/papers/v24/21-0187.html
#supervised #labeled #annotated
'Nevis'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research', by Jorg Bornschein et al.
http://jmlr.org/papers/v24/22-1345.html
#recognition #supervised #classification
'Surrogate Assisted Semi-supervised Inference for High Dimensional Risk Prediction', by Jue Hou, Zijian Guo, Tianxi Cai.
http://jmlr.org/papers/v24/21-1075.html
#imputation #predictors #supervised
New OfferFit #whitepaper on going from #supervised #machinelearning to #reinforcementlearning - there can be a lot of issues if you try to pick next best actions with supervised models alone! (The white paper cites my own blog post on the subject
https://offerfit.ai/content/white-paper/time-to-let-your-ai-out-of-the-box