mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.7K
active users

#embeddings

2 posts2 participants1 post today
Hacker News<p>Embeddings Are Underrated</p><p><a href="https://technicalwriting.dev/ml/embeddings/overview.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">technicalwriting.dev/ml/embedd</span><span class="invisible">ings/overview.html</span></a></p><p><a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HackerNews</span></a> <a href="https://mastodon.social/tags/Embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Embeddings</span></a> <a href="https://mastodon.social/tags/Underrated" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Underrated</span></a> <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MachineLearning</span></a> <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataScience</span></a> <a href="https://mastodon.social/tags/AIInsights" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AIInsights</span></a></p>
Markus Eisele<p>From Strings to Semantics: Comparing Text with Java, Quarkus, and Embeddings<br>Learn how to build an AI-powered text similarity service using Quarkus, LangChain4j, and local embedding models. <br><a href="https://myfear.substack.com/p/java-quarkus-text-embeddings-similarity" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">myfear.substack.com/p/java-qua</span><span class="invisible">rkus-text-embeddings-similarity</span></a><br><a href="https://mastodon.online/tags/Java" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Java</span></a> <a href="https://mastodon.online/tags/Quarkus" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Quarkus</span></a> <a href="https://mastodon.online/tags/Embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Embeddings</span></a> <a href="https://mastodon.online/tags/Ollama" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Ollama</span></a> <a href="https://mastodon.online/tags/LangChain4j" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LangChain4j</span></a></p>
JMLR<p>'Variance-Aware Estimation of Kernel Mean Embedding', by Geoffrey Wolfer, Pierre Alquier.</p><p><a href="http://jmlr.org/papers/v26/23-0161.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v26/23-0161.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> <a href="https://sigmoid.social/tags/embedding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embedding</span></a> <a href="https://sigmoid.social/tags/empirical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>empirical</span></a></p>
Hacker News<p>HNSW index for vector embeddings in approx 500 LOC</p><p><a href="https://github.com/dicroce/hnsw" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/dicroce/hnsw</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HackerNews</span></a> <a href="https://mastodon.social/tags/HNSW" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HNSW</span></a> <a href="https://mastodon.social/tags/vector" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>vector</span></a> <a href="https://mastodon.social/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> <a href="https://mastodon.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>machinelearning</span></a> <a href="https://mastodon.social/tags/GitHub" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GitHub</span></a> <a href="https://mastodon.social/tags/500LOC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>500LOC</span></a></p>
MSvana<p>Big update to my Embeddings Playground. I added support for the first free-to-use embedding model: "all-MiniLM-L6-v2" from Sentence transformers (<a href="https://www.sbert.net/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">sbert.net/</span><span class="invisible"></span></a>).</p><p>Try the Embeddings playground here: <a href="https://embeddings.svana.name" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">embeddings.svana.name</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/ai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ai</span></a> <a href="https://mastodon.social/tags/ml" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ml</span></a> <a href="https://mastodon.social/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> <a href="https://mastodon.social/tags/programming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>programming</span></a></p>
FIZ ISE Research Group<p>We are very happy that our colleage <span class="h-card" translate="no"><a href="https://sigmoid.social/@GenAsefa" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>GenAsefa</span></a></span> has contributed the chapter on "Neurosymbolic Methods for Dynamic Knowledge Graphs" for the newly published Handbook on Neurosymbolic AI and Knowledge Graphs together with Mehwish Alam and Pierre-Henri Paris.</p><p>Handbook: <a href="https://ebooks.iospress.nl/doi/10.3233/FAIA400" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">ebooks.iospress.nl/doi/10.3233</span><span class="invisible">/FAIA400</span></a><br>our own chapter on arxive: <a href="https://arxiv.org/abs/2409.04572" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2409.04572</span><span class="invisible"></span></a></p><p><a href="https://sigmoid.social/tags/neurosymbolicAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neurosymbolicAI</span></a> <a href="https://sigmoid.social/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://sigmoid.social/tags/generativeAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>generativeAI</span></a> <a href="https://sigmoid.social/tags/LLMs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLMs</span></a> <a href="https://sigmoid.social/tags/knowledgegraphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>knowledgegraphs</span></a> <a href="https://sigmoid.social/tags/semanticweb" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>semanticweb</span></a> <a href="https://sigmoid.social/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> <a href="https://sigmoid.social/tags/graphembeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graphembeddings</span></a></p>
Judith van Stegeren<p>Should you use OpenAI (or other closed-source) embeddings?</p><p>1. Try the lightest embedding model first<br>2. If it doesn’t work, try a beefier model and do a blind comparison<br>3. If you are already using a relatively large model, only then try some blind test against a proprietary model. If you really find it that the closed-source model is better for your application, then go for it.</p><p>Paraphrased from <a href="https://iamnotarobot.substack.com/p/should-you-use-openais-embeddings" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">iamnotarobot.substack.com/p/sh</span><span class="invisible">ould-you-use-openais-embeddings</span></a></p><p><a href="https://fosstodon.org/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> <a href="https://fosstodon.org/tags/genai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>genai</span></a> <a href="https://fosstodon.org/tags/openai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>openai</span></a> <a href="https://fosstodon.org/tags/ada" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ada</span></a></p>
FIZ ISE Research Group<p>Poster from our colleague <span class="h-card" translate="no"><a href="https://blog.epoz.org/" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>epoz</span></a></span> from UGent-IMEC Linked Data &amp; Solid course. "Exploding Mittens - Getting to grips with huge SKOS datasets" on semantic embeddings enhanced SPARQL queries for ICONCLASS data.<br>Congrats for the 'best poster' award ;-) </p><p>poster: <a href="https://zenodo.org/records/14887544" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">zenodo.org/records/14887544</span><span class="invisible"></span></a><br>iconclass on GitHub: <a href="https://github.com/iconclass" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/iconclass</span><span class="invisible"></span></a></p><p><a href="https://sigmoid.social/tags/rdf2vec" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rdf2vec</span></a> <a href="https://sigmoid.social/tags/bert" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bert</span></a> <a href="https://sigmoid.social/tags/llm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>llm</span></a> <a href="https://sigmoid.social/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> <a href="https://sigmoid.social/tags/iconclass" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>iconclass</span></a> <a href="https://sigmoid.social/tags/semanticweb" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>semanticweb</span></a> <a href="https://sigmoid.social/tags/lod" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>lod</span></a> <a href="https://sigmoid.social/tags/linkeddata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>linkeddata</span></a> <a href="https://sigmoid.social/tags/knowledgegraphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>knowledgegraphs</span></a> <a href="https://sigmoid.social/tags/dh" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dh</span></a> <span class="h-card" translate="no"><a href="https://nfdi.social/@nfdi4culture" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>nfdi4culture</span></a></span> <span class="h-card" translate="no"><a href="https://wisskomm.social/@fiz_karlsruhe" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>fiz_karlsruhe</span></a></span> <a href="https://sigmoid.social/tags/iconclass" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>iconclass</span></a></p>
lqdev<p>Nomic Embed Text V2: An Open Source, Multilingual, Mixture-of-Experts Embedding Model <a href="https://toot.lqdev.tech/tags/nomic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nomic</span></a> <a href="https://toot.lqdev.tech/tags/ai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ai</span></a> <a href="https://toot.lqdev.tech/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> <a href="https://www.luisquintanilla.me/feed/nomic-embed-text-v2?utm_medium=feed" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">luisquintanilla.me/feed/nomic-</span><span class="invisible">embed-text-v2?utm_medium=feed</span></a></p>
Jennifer Lin<p>Here's a new post on my first encounter with building a simple deep learning model on manually-compiled adverse drug reactions data (thanks to <span class="h-card" translate="no"><a href="https://mstdn.science/@baoilleach" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>baoilleach</span></a></span> for feedback) - <a href="https://jhylin.github.io/Data_in_life_blog/posts/22_Simple_dnn_adrs/2_ADR_regressor.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jhylin.github.io/Data_in_life_</span><span class="invisible">blog/posts/22_Simple_dnn_adrs/2_ADR_regressor.html</span></a></p><p>Notes re. data - <a href="https://jhylin.github.io/Data_in_life_blog/posts/22_Simple_dnn_adrs/1_ADR_data.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jhylin.github.io/Data_in_life_</span><span class="invisible">blog/posts/22_Simple_dnn_adrs/1_ADR_data.html</span></a></p><p><a href="https://fosstodon.org/tags/PyTorch" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyTorch</span></a> <a href="https://fosstodon.org/tags/RDKit" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RDKit</span></a> <a href="https://fosstodon.org/tags/ChEMBL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ChEMBL</span></a> <a href="https://fosstodon.org/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> <a href="https://fosstodon.org/tags/cheminformatics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cheminformatics</span></a></p>
Mark Igra<p>Is there a consensus process or good paper on state of the art on using <a href="https://sciences.social/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> &amp; <a href="https://sciences.social/tags/LLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLM</span></a> to do the kinds of things that were being done with topic models? I imagine for tasks with pre-defined classifications, prompts are sufficient, but any recommendations for identifying latent classes? After reading the paper below I think I'll want to use local models. <a href="https://sciences.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>machinelearning</span></a> <a href="https://drive.google.com/file/d/1wNDIkMZfAGoh4Oaojrgll9SPg3eT-YXz/view" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">drive.google.com/file/d/1wNDIk</span><span class="invisible">MZfAGoh4Oaojrgll9SPg3eT-YXz/view</span></a></p>
marmelab<p>🗞️ Great read on binary vector embeddings &amp; why they are so impressive.</p><p>In short, they can retain 95+% retrieval accuracy with 32x compression and ~25x retrieval speedup. 🤯</p><p>🔗 <a href="https://emschwartz.me/binary-vector-embeddings-are-so-cool/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">emschwartz.me/binary-vector-em</span><span class="invisible">beddings-are-so-cool/</span></a> </p><p>✍️ Evan Schwartz <br><a href="https://mastodon.social/tags/ai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ai</span></a> <a href="https://mastodon.social/tags/appreciation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>appreciation</span></a> <a href="https://mastodon.social/tags/LLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLM</span></a> <a href="https://mastodon.social/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> <a href="https://mastodon.social/tags/scour" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>scour</span></a> <a href="https://mastodon.social/tags/search" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>search</span></a></p>
Alessio Pomaro<p>🧠 Sentiamo sempre più spesso parlare di <a href="https://mastodon.uno/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a>: di cosa si tratta, come si generano, e come possono essere utili nei flussi operativi? <br>🔗 Una spiegazione semplice, con alcuni esempi di utilizzo:&nbsp;<a href="https://www.alessiopomaro.it/embeddings-cosa-sono-esempi/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">alessiopomaro.it/embeddings-co</span><span class="invisible">sa-sono-esempi/</span></a>.<br>✨ Facciamo anche alcune importanti riflessioni&nbsp;sull'importanza della consapevolezza di questi&nbsp;sistemi per ottenere performance.&nbsp;</p><p><a href="https://mastodon.uno/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://mastodon.uno/tags/GenAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GenAI</span></a> <a href="https://mastodon.uno/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GenerativeAI</span></a> <a href="https://mastodon.uno/tags/IntelligenzaArtificiale" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IntelligenzaArtificiale</span></a> <a href="https://mastodon.uno/tags/LLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLM</span></a></p>
Andrew Spirit Wooldridge ⚔️<p>Embeddings are cool <a href="https://technicalwriting.dev/data/embeddings.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">technicalwriting.dev/data/embe</span><span class="invisible">ddings.html</span></a> <a href="https://social.lol/tags/llm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>llm</span></a> <a href="https://social.lol/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a></p>
Alessio Pomaro<p>🐸 Screaming Frog introduce le API per l'interfacciamento con i modelli di <a href="https://mastodon.uno/tags/OpenAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenAI</span></a>, <a href="https://mastodon.uno/tags/Google" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Google</span></a> e con <a href="https://mastodon.uno/tags/Ollama" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Ollama</span></a>.&nbsp;<br>✨ Lavora sull'HTML salvato in fase di scansione, mentre nella versione precedente si usavano snippet JavaScript personalizzati eseguiti durante il rendering delle pagine. <br>👉 È possibile generare <a href="https://mastodon.uno/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> e contenuti con prompt personalizzati su contesti selezionabili (attraverso estrattori predefiniti e custom).</p><p><a href="https://mastodon.uno/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://mastodon.uno/tags/GenAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GenAI</span></a> <a href="https://mastodon.uno/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GenerativeAI</span></a> <a href="https://mastodon.uno/tags/IntelligenzaArtificiale" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IntelligenzaArtificiale</span></a> <a href="https://mastodon.uno/tags/LLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLM</span></a>&nbsp;<a href="https://mastodon.uno/tags/SEO" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SEO</span></a></p>
michabbb<p>🔍 <a href="https://social.vivaldi.net/tags/txtai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>txtai</span></a> - All-in-one <a href="https://social.vivaldi.net/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> database combining vector indexes, graph networks &amp; relational databases</p><p>💡 Key Features:<br>• Vector search with SQL support, object storage, topic modeling &amp; multimodal indexing for text, documents, audio, images &amp; video<br>• Built-in <a href="https://social.vivaldi.net/tags/RAG" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RAG</span></a> capabilities with citation support &amp; autonomous <a href="https://social.vivaldi.net/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> agents for complex problem-solving<br>• <a href="https://social.vivaldi.net/tags/LLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLM</span></a> orchestration supporting multiple frameworks including <a href="https://social.vivaldi.net/tags/HuggingFace" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HuggingFace</span></a>, <a href="https://social.vivaldi.net/tags/OpenAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenAI</span></a> &amp; AWS Bedrock<br>• Seamless integration with <a href="https://social.vivaldi.net/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a> 3.9+, built on <a href="https://social.vivaldi.net/tags/FastAPI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FastAPI</span></a> &amp; Sentence Transformers</p><p>🛠️ Technical Highlights:<br>• Supports multiple programming languages through API bindings (<a href="https://social.vivaldi.net/tags/JavaScript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>JavaScript</span></a>, <a href="https://social.vivaldi.net/tags/Java" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Java</span></a>, <a href="https://social.vivaldi.net/tags/Rust" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Rust</span></a>, <a href="https://social.vivaldi.net/tags/Go" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Go</span></a>)<br>• Easy deployment: run locally or scale with container orchestration<br>• <a href="https://social.vivaldi.net/tags/opensource" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>opensource</span></a> under Apache 2.0 license<br>• Minimal setup: installation via pip or Docker</p><p>🔄 Use Cases:<br>• Semantic search applications<br>• Knowledge base construction<br>• Multi-model workflows<br>• Speech-to-speech processing<br>• Document analysis &amp; summarization</p><p>Learn more: <a href="https://github.com/neuml/txtai" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/neuml/txtai</span><span class="invisible"></span></a></p>
Alessio Pomaro<p>🧠 Ieri, al Festival Biblico Tech, la protagonista è stata l'<a href="https://mastodon.uno/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a>, ma soprattutto la riflessione e lo spirito critico. <br>⭐ Con una grande conduzione di Massimo Cerofolini e Roberta Rocelli, e con compagni di viaggio d'eccezione.<br>💡 Porto a casa nuovi stimoli, nuovi pensieri, e, da buon nerd, un test da mettere in atto sugli <a href="https://mastodon.uno/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> e la valutazione dei bias dei <a href="https://mastodon.uno/tags/LLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLM</span></a>, discusso con Paolo Benanti. </p><p><a href="https://mastodon.uno/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://mastodon.uno/tags/GenAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GenAI</span></a> <a href="https://mastodon.uno/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GenerativeAI</span></a> <a href="https://mastodon.uno/tags/IntelligenzaArtificiale" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IntelligenzaArtificiale</span></a> <a href="https://mastodon.uno/tags/futuro" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>futuro</span></a></p>
रञ्जित (Ranjit Mathew)<p>Wasn’t this…obvious? 🤔</p><p>“Vector Databases Are The Wrong Abstraction”, Timescale (<a href="https://www.timescale.com/blog/vector-databases-are-the-wrong-abstraction/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">timescale.com/blog/vector-data</span><span class="invisible">bases-are-the-wrong-abstraction/</span></a>).</p><p>Via HN: <a href="https://news.ycombinator.com/item?id=41985176" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">news.ycombinator.com/item?id=4</span><span class="invisible">1985176</span></a></p><p><a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MachineLearning</span></a> <a href="https://mastodon.social/tags/Databases" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Databases</span></a> <a href="https://mastodon.social/tags/Embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Embeddings</span></a> <a href="https://mastodon.social/tags/VectorDB" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>VectorDB</span></a> <a href="https://mastodon.social/tags/DB" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DB</span></a> <a href="https://mastodon.social/tags/ML" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ML</span></a> <a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/ArtificialIntelligence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ArtificialIntelligence</span></a> <a href="https://mastodon.social/tags/VectorDatabases" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>VectorDatabases</span></a></p>
Talk to Me About Tech<p>Brand new <a href="https://hachyderm.io/tags/OpenSource" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenSource</span></a> tool for <a href="https://hachyderm.io/tags/PostgreSQL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PostgreSQL</span></a> - pgai Vectorizer - just launched today from <a href="https://hachyderm.io/tags/TimescaleDB" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TimescaleDB</span></a>! Manage <a href="https://hachyderm.io/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a> with just one <a href="https://hachyderm.io/tags/SQL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SQL</span></a> command to keep embeddings in sync with your data in a far easier fashion. </p><p>Learn more on the <a href="https://hachyderm.io/tags/GitHub" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GitHub</span></a> repository here: <a href="https://github.com/timescale/pgai/blob/main/docs/vectorizer.md" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/timescale/pgai/blob</span><span class="invisible">/main/docs/vectorizer.md</span></a></p><p><a href="https://hachyderm.io/tags/postgres" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>postgres</span></a> <a href="https://hachyderm.io/tags/timescale" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>timescale</span></a> <a href="https://hachyderm.io/tags/pgai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pgai</span></a> <a href="https://hachyderm.io/tags/pgvector" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pgvector</span></a> <a href="https://hachyderm.io/tags/vector" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>vector</span></a> <a href="https://hachyderm.io/tags/ai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ai</span></a> <a href="https://hachyderm.io/tags/llama" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>llama</span></a></p>
Alessio Pomaro<p>📆 Domani, all'Advanced SEO Tool vedremo una pillola tecnica dal titolo "Embeddings e SEO: è QUASI magia". <br>✨ È possibile rimuovere quel "QUASI"? Secondo me sì.. con la consapevolezza di questi strumenti, che proveremo ad acquisire.&nbsp; <br>⚙️ Vedremo esempi pratici di utilizzo,&nbsp; test e considerazioni. <br>💡 Per poi scoprire che non si tratta di "magia"!</p><p><a href="https://mastodon.uno/tags/advSEOTool" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>advSEOTool</span></a> <a href="https://mastodon.uno/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://mastodon.uno/tags/SEO" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SEO</span></a> <a href="https://mastodon.uno/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GenerativeAI</span></a> <a href="https://mastodon.uno/tags/embeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>embeddings</span></a></p>