mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.9K
active users

#viscosity

0 posts0 participants0 posts today
ChemistryViews<p>Room-Temperature Zwitterionic Liquids You Can Actually Stir:<br>Incorporation of a flexible oligoether chain into the spacer between cationic and anionic units reduces viscosity effectively<br><a href="https://www.chemistryviews.org/room-temperature-zwitterionic-liquids-you-can-actually-stir/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">chemistryviews.org/room-temper</span><span class="invisible">ature-zwitterionic-liquids-you-can-actually-stir/</span></a></p><p><a href="https://mstdn.social/tags/zwitterionicliquids" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>zwitterionicliquids</span></a> <a href="https://mstdn.social/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a> <a href="https://mstdn.social/tags/chemistry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>chemistry</span></a> <a href="https://mstdn.social/tags/chemistryviews" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>chemistryviews</span></a> <a href="https://mstdn.social/tags/chemviews" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>chemviews</span></a></p>
Giuseppe Bilotta<p>I'll take the opportunity to open a small parenthesis on what <a href="https://fediscience.org/tags/rheology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rheology</span></a> aka “the science of the flow”, is: the term, which can be used both for fluids and (some classes of) deformable solids describes the relationship between stress and strain in a continumm.</p><p>To wit, for something to flow (or deform), there must be a force applied. The relation between this force and how much (and how quickly) the continuum deforms is what rheology is about.</p><p>Rheology deals with two main classes of behavior: <a href="https://fediscience.org/tags/plasticity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>plasticity</span></a> and <a href="https://fediscience.org/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a>.</p><p>Plastic behavior refers to (permanent) deformations whose magnitude depends on the applied force: smaller forces result in smaller deformations, larger forces in larger deformations. This is typical of solids.</p><p>Viscous behavior refers to deformations whose rate depends on the applied force: in this sense deformations can be “infinite” (the distance between two given points can grow arbitrarily), and as long as the force is applied the deformation will grow. <a href="https://fediscience.org/tags/Viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Viscosity</span></a> determines how strongly the continuum (typically a fluid) resits to the deformation, and thus how quickly (or slowly) it deforms.</p><p>And of course you can have hybrid behaviors (viscoplastic, viscoelastic, viscoplastoelastic).</p><p>5/</p>
Nicole Sharp<p><strong>A New Mantle Viscosity Shift</strong></p><p>The rough picture of Earth’s interior — a crust, mantle, and core — is well-known, but the details of its inner structure are more difficult to pin down. A <a href="https://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1738917" rel="nofollow noopener noreferrer" target="_blank">recent study analyzed</a> seismic wave data with a machine learning algorithm to identify regions of the mantle where waves slowed down. These shifts in seismic wave speed occur in areas where the mantle’s viscosity changes; a higher viscosity makes waves travel slower.</p><p>The team found seismic wave speed shifts at depths of 400 and 650 kilometers, corresponding to known viscosity changes. But they found shifts at 1050 and 1500 kilometers, as well — the first time anyone has shown a global viscosity shift at those depths. Their analysis suggests a higher viscosity in this mid-mantle transition zone, which could affect how tectonic plates, which rely on these slow mantle flows, move. (Image credit: <a href="https://unsplash.com/photos/earth-with-clouds-above-the-african-continent-vhSz50AaFAs" rel="nofollow noopener noreferrer" target="_blank">NASA</a>; research credit: <a href="https://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1738917" rel="nofollow noopener noreferrer" target="_blank">K. O’Farrell and Y. Wang</a>; via <a href="https://doi.org/10.1029/2024EO240570" rel="nofollow noopener noreferrer" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mantle-convection/" target="_blank">#mantleConvection</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscosity/" target="_blank">#viscosity</a></p>
Nicole Sharp <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/maranb1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/maranb2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/maranb3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>When surface tension varies along an interface, fluids move from regions of low surface tension to higher surface tension, a behavior known as the Marangoni effect. Here, a drop of (dyed) water is placed on glycerol. The two fluids are miscible, but water has much a lower viscosity and density yet a higher surface tension. The drop’s interface quickly becomes unstable; viscous fingers form along the edge as the less viscous water pushes into the more viscous glycerol. Eventually, the surface-tension-driven Marangoni flow breaks those fingers off into lip-like daughter drops. The researchers also show how the interplay between viscosity and surface tension affects the size of fingers that form by varying the water/glycerol concentration. (Image and video credit: <a href="https://doi.org/10.1103/APS.DFD.2021.GFM.V0021" rel="nofollow noopener noreferrer" target="_blank">A. Hooshanginejad et al.</a>)</p><p><a href="https://fyfluiddynamics.com/2024/10/marangoni-blossoms/" class="" rel="nofollow noopener noreferrer" target="_blank">https://fyfluiddynamics.com/2024/10/marangoni-blossoms/</a></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2021gofm/" target="_blank">#2021gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/marangoni-effect/" target="_blank">#marangoniEffect</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-tension/" target="_blank">#surfaceTension</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscosity/" target="_blank">#viscosity</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-fingering/" target="_blank">#viscousFingering</a></p>
Beilstein-Institut<p>Thomas Strassner and Stefan Fritsch <span class="h-card" translate="no"><a href="https://wisskomm.social/@tudresden" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>tudresden</span></a></span> present a new class of tunable aryl alkyl ionic liquids (TAAILs) ➡️ <a href="https://www.beilstein-journals.org/bjoc/articles/20/110?M=y" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">beilstein-journals.org/bjoc/ar</span><span class="invisible">ticles/20/110?M=y</span></a></p><p><a href="https://hessen.social/tags/conductivity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>conductivity</span></a> <a href="https://hessen.social/tags/IonicLiquids" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IonicLiquids</span></a> <a href="https://hessen.social/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a><br><a href="https://hessen.social/tags/DiamondOpenAccess" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DiamondOpenAccess</span></a> 💎🔓 <a href="https://hessen.social/tags/BJOC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BJOC</span></a></p>
Nicole Sharp<p>These days glass screens travel with us everywhere, and they can take some big hits on the way. Manufacturers have made tougher glass, but they continue to look for ways to protect our screens. Recently, a <a href="https://doi.org/10.1073/pnas.2317832121" rel="nofollow noopener noreferrer" target="_blank">study suggested</a> that non-Newtonian fluids are well-suited to the task. </p><p>The team explored the physics of sandwiching a layer of fluid between a glass top layer and an LCD screen bottom layer, mimicking structures found in electronic devices. Through simulation, they searched for the fluid characteristics that would best minimize the forces felt by the solid layers during an impact. They found that shear-thinning fluids — fluids that, like paint or shampoo, get runnier when they’re deformed — provided the best protection. Having the impact energy go into reducing the local viscosity of the fluid stretches the length of time the impact affects the glass, which lowers the bending forces on it and helps avoid breakage. (Image credit: <a href="https://unsplash.com/photos/a-broken-cell-phone-sitting-on-top-of-a-white-table-FD8TFvky9A8" rel="nofollow noopener noreferrer" target="_blank">G. Rosenke</a>; research credit: <a href="https://doi.org/10.1073/pnas.2317832121" rel="nofollow noopener noreferrer" target="_blank">J. Richards et al.</a>; via <a href="https://physicsworld.com/a/protecting-phone-screens-with-non-newtonian-fluids/?utm_campaign=14290-57998&amp;utm_content=Title%3A%20Protecting%20phone%20screens%20with%20non-Newtonian%20fluids%20-%20Editors_pick&amp;utm_term=&amp;utm_medium=email&amp;utm_source=iop" rel="nofollow noopener noreferrer" target="_blank">Physics World</a>)</p><p><a href="https://fyfluiddynamics.com/2024/05/saving-screens-with-shear-thinning-fluids/" class="" rel="nofollow noopener noreferrer" target="_blank">https://fyfluiddynamics.com/2024/05/saving-screens-with-shear-thinning-fluids/</a></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/engineering/" target="_blank">#engineering</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/non-newtonian-fluids/" target="_blank">#nonNewtonianFluids</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/numerical-simulation/" target="_blank">#numericalSimulation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/shear-thinning/" target="_blank">#shearThinning</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solid-mechanics/" target="_blank">#solidMechanics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscosity/" target="_blank">#viscosity</a></p>
Nicole Sharp<p>If you sandwich a viscous fluid between two plates and inject a less viscous fluid, you’ll get viscous fingers that spread and split as they grow. This research poster depicts that situation with a slight twist: the viscous fluid (transparent in the image) is shear-thinning. That means its viscosity drops when it’s deformed. In this situation, the fingers formed by the injected (blue) fluid start out the way we’d expect: splitting as they grow (inner portion of the composite image). But then, the tip-splitting stops and the fingers instead elongate into spikes (middle ring). Eventually, as the outer fluid’s viscosity drops further, the fingers round out and spread without splitting (outer arc of the image). (Image credit: <a href="https://res.cloudinary.com/apsphysics/image/upload/v1708026284/P024_TheEvolvingInterface_-_Evan_Dakov_g3pgbn.jpg" rel="nofollow noopener noreferrer" target="_blank">E. Dakov et al.</a>; via <a href="https://engage.aps.org/dsoft/gallery/gallery/mm24-gallery" rel="nofollow noopener noreferrer" target="_blank">GoSM</a>)</p><p><a href="https://fyfluiddynamics.com/2024/04/evolving-fingers/" class="" rel="nofollow noopener noreferrer" target="_blank">https://fyfluiddynamics.com/2024/04/evolving-fingers/</a></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gosmp/" target="_blank">#2024gosmp</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/hele-shaw-cell/" target="_blank">#HeleShawCell</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/non-newtonian-fluids/" target="_blank">#nonNewtonianFluids</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/saffman-taylor-instability/" target="_blank">#SaffmanTaylorInstability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/shear-thinning/" target="_blank">#shearThinning</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-tension/" target="_blank">#surfaceTension</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscosity/" target="_blank">#viscosity</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-fingering/" target="_blank">#viscousFingering</a></p>
JMLR<p>'Large data limit of the MBO scheme for data clustering: convergence of the dynamics', by Tim Laux, Jona Lelmi.</p><p><a href="http://jmlr.org/papers/v24/22-1089.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v24/22-1089.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a> <a href="https://sigmoid.social/tags/clustering" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>clustering</span></a> <a href="https://sigmoid.social/tags/curvature" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>curvature</span></a></p>
Fil 🏳️‍⚧️<p>Going through the thick of something. High <a href="https://universeodon.com/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a> will allow me to fully reverse the flow. Right? <a href="https://universeodon.com/tags/fluiddynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fluiddynamics</span></a> <a href="https://universeodon.com/tags/Fluid" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Fluid</span></a> <a href="https://universeodon.com/tags/FD" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FD</span></a></p>
IAintShootinMis<p>What is the scientific word for a Fluid or semi-Fluid that holds its bead when put on a surface. Think ketchup. You could write with it, and the ketchup would mostly hold its location and height. </p><p>Is this viscosity also? Or is there a word for the vertical strength of a liquid/gel</p><p><a href="https://digitaldarkage.cc/tags/hydrodynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hydrodynamics</span></a> <a href="https://digitaldarkage.cc/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a> <a href="https://digitaldarkage.cc/tags/engineering" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>engineering</span></a> <a href="https://digitaldarkage.cc/tags/liquid" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>liquid</span></a> <a href="https://digitaldarkage.cc/tags/gel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>gel</span></a> <a href="https://digitaldarkage.cc/tags/viscous" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscous</span></a> <a href="https://digitaldarkage.cc/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a></p>
sluttymayo<p>i was refilling the soap dispenser and i icarused, went too fast and it back flowed over the outside and now i'm a sudsy ass dumb bitch. <a href="https://jorts.horse/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a></p>
Scientific Frontline<p>A method for <a href="https://mastodon.social/tags/theoretically" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theoretically</span></a> high-precision determination of the <a href="https://mastodon.social/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a> of liquid metals using a trained artificial <a href="https://mastodon.social/tags/neural" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neural</span></a> <a href="https://mastodon.social/tags/network" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>network</span></a>. The method was successfully tested in the process of building the deep learning potential of the neural network on the example of liquid <a href="https://mastodon.social/tags/gallium" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>gallium</span></a>.<br><a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/ArtificialIntelligence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ArtificialIntelligence</span></a> <a href="https://mastodon.social/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://mastodon.social/tags/sflorg" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sflorg</span></a><br><a href="https://www.sflorg.com/2022/12/scn12092201.html" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">sflorg.com/2022/12/scn12092201</span><span class="invisible">.html</span></a></p>
Kim Mens<p>In the <a href="https://mastodon.online/tags/CognitiveDimensions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CognitiveDimensions</span></a> framework, the <a href="https://mastodon.online/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a> of a system is defined as the resistance it shows when <a href="https://mastodon.online/tags/refactoring" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>refactoring</span></a> it for changes. The more viscous a system is, the more <a href="https://mastodon.online/tags/changes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>changes</span></a> are required to add, remove or change a feature or functionality of it. <a href="https://mastodon.online/tags/SoftwareEngineering" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SoftwareEngineering</span></a> <a href="https://mastodon.online/tags/SoftwareEvolution" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SoftwareEvolution</span></a></p>
Phys.org<p>Referenced link: <a href="https://medicalxpress.com/news/2022-11-extracellular-viscosity-linked-cancer.html" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">medicalxpress.com/news/2022-11</span><span class="invisible">-extracellular-viscosity-linked-cancer.html</span></a><br>Discuss on <a href="https://discu.eu/q/https://medicalxpress.com/news/2022-11-extracellular-viscosity-linked-cancer.html" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discu.eu/q/https://medicalxpre</span><span class="invisible">ss.com/news/2022-11-extracellular-viscosity-linked-cancer.html</span></a></p><p>Originally posted by Phys.org / @physorg_com@twitter.com: <a href="https://twitter.com/medical_xpress/status/1587843187070193664#m" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">twitter.com/medical_xpress/sta</span><span class="invisible">tus/1587843187070193664#m</span></a></p><p>RT by @physorg_com: Extracellular <a href="https://social.platypush.tech/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a> linked to <a href="https://social.platypush.tech/tags/cancer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cancer</span></a> spread @nature <a href="https://medicalxpress.com/news/2022-11-extracellular-viscosity-linked-cancer.html" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">medicalxpress.com/news/2022-11</span><span class="invisible">-extracellular-viscosity-linked-cancer.html</span></a></p>
@Om<p>sand liquefied...</p><p><a href="https://mastodon.social/tags/sand" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sand</span></a> <a href="https://mastodon.social/tags/liquid" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>liquid</span></a> <a href="https://mastodon.social/tags/liquefied" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>liquefied</span></a> <a href="https://mastodon.social/tags/ball" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ball</span></a> <a href="https://mastodon.social/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a> <a href="https://mastodon.social/tags/animatedgif" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>animatedgif</span></a></p>
@Om<p>viscosity...</p><p><a href="https://mastodon.social/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a> <a href="https://mastodon.social/tags/piling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>piling</span></a> <a href="https://mastodon.social/tags/bodies" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bodies</span></a> <a href="https://mastodon.social/tags/melting" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>melting</span></a> <a href="https://mastodon.social/tags/splat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>splat</span></a> <a href="https://mastodon.social/tags/animatedgif" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>animatedgif</span></a></p>
@Om<p>gravity vs viscosity...</p><p><a href="https://mastodon.social/tags/gravity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>gravity</span></a> <a href="https://mastodon.social/tags/versus" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>versus</span></a> <a href="https://mastodon.social/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a> <a href="https://mastodon.social/tags/cup" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cup</span></a> <a href="https://mastodon.social/tags/nut" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nut</span></a> <a href="https://mastodon.social/tags/thimble" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>thimble</span></a> <a href="https://mastodon.social/tags/grape" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>grape</span></a> <a href="https://mastodon.social/tags/animatedgif" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>animatedgif</span></a></p>
@Om*<p>gravity vs viscosity...</p><p><a href="https://mastodon.cloud/tags/gravity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>gravity</span></a> <a href="https://mastodon.cloud/tags/versus" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>versus</span></a> <a href="https://mastodon.cloud/tags/viscosity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>viscosity</span></a> <a href="https://mastodon.cloud/tags/cup" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cup</span></a> <a href="https://mastodon.cloud/tags/nut" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nut</span></a> <a href="https://mastodon.cloud/tags/thimble" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>thimble</span></a> <a href="https://mastodon.cloud/tags/grape" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>grape</span></a> <a href="https://mastodon.cloud/tags/animatedgif" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>animatedgif</span></a></p>