Emmanuel José García<p>A Curious Family of Integrals that Always Give \(\pi\)!</p><p>I wonder if it is possible to characterize \(\frac{P(x)}{Q(x)}\) such that by inspection we can say: this is \(n\pi\). Travis has commented that the denominator has a special Galois group. Does anybody know who can answer this question at MathSE:<br /><a href="https://math.stackexchange.com/questions/4736889/a-curious-family-of-integrals-that-give-pi?noredirect=1#comment10046166_4736889" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">math.stackexchange.com/questio</span><span class="invisible">ns/4736889/a-curious-family-of-integrals-that-give-pi?noredirect=1#comment10046166_4736889</span></a></p><p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/calculus" class="mention hashtag" rel="tag">#<span>calculus</span></a> <a href="https://mathstodon.xyz/tags/integral" class="mention hashtag" rel="tag">#<span>integral</span></a> <a href="https://mathstodon.xyz/tags/rationalfunctions" class="mention hashtag" rel="tag">#<span>rationalfunctions</span></a> <a href="https://mathstodon.xyz/tags/pi" class="mention hashtag" rel="tag">#<span>pi</span></a></p>