Jitse Niesen<p>I am excited to read about numpy_quaddtype, a project to include quad precision in numpy. The standard precision in numpy (and most other places) is double precision: numbers are stored in 64 bits and the precision is about 16 decimal digits. This is usually enough but not always.</p><p>Numpy does have longdouble, which may or may not increase precision, depending on your platform, but even if it does, the increase is very modest. If I need more precision, I typically use FLINT, but that is meant for super high precision and rigorous computations. It will be very good to have another tool.</p><p>More details in this blogpost: <a href="https://labs.quansight.org/blog/numpy-quaddtype-blog" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">labs.quansight.org/blog/numpy-</span><span class="invisible">quaddtype-blog</span></a></p><p><a href="https://mathstodon.xyz/tags/FloatingPoint" class="mention hashtag" rel="tag">#<span>FloatingPoint</span></a> <a href="https://mathstodon.xyz/tags/numpy" class="mention hashtag" rel="tag">#<span>numpy</span></a> <a href="https://mathstodon.xyz/tags/quansight" class="mention hashtag" rel="tag">#<span>quansight</span></a> <a href="https://mathstodon.xyz/tags/NumericalAnalysis" class="mention hashtag" rel="tag">#<span>NumericalAnalysis</span></a></p>