mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.7K
active users

#nonparametrics

0 posts0 participants0 posts today
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #316 Two-sample Paired Signed-rank Test</p><p>Thoughts: RCompanion is a great resource when starting out with R and learning about various ordinal tests.</p><p><a href="https://mastodon.social/tags/rankdata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rankdata</span></a> <a href="https://mastodon.social/tags/nonparametrics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nonparametrics</span></a> <a href="https://mastodon.social/tags/twogroups" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>twogroups</span></a> <a href="https://mastodon.social/tags/tutorial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tutorial</span></a> <a href="https://mastodon.social/tags/R" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>R</span></a> <a href="https://mastodon.social/tags/median" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>median</span></a></p><p><a href="https://rcompanion.org/handbook/F_06.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">rcompanion.org/handbook/F_06.h</span><span class="invisible">tml</span></a></p>
JMLR<p>'Learning-augmented count-min sketches via Bayesian nonparametrics', by Emanuele Dolera, Stefano Favaro, Stefano Peluchetti.</p><p><a href="http://jmlr.org/papers/v24/21-0096.html" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v24/21-0096.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/priors" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>priors</span></a> <a href="https://sigmoid.social/tags/nonparametrics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nonparametrics</span></a> <a href="https://sigmoid.social/tags/nonparametric" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nonparametric</span></a></p>
Martin Trapp<p>Because I moved instances some time ago, a short re-<a href="https://ellis.social/tags/introduction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>introduction</span></a>.</p><p>I am a postdoctoral researcher at Aalto University studying topics at the intersection of <a href="https://ellis.social/tags/tractable" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tractable</span></a> models (probabilistic circuits), <a href="https://ellis.social/tags/deeplearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>deeplearning</span></a>, and <a href="https://ellis.social/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> methods with a focus on <a href="https://ellis.social/tags/nonparametrics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nonparametrics</span></a>. My goal is to develop and understand methods that are highly flexible &amp; adaptive but allow tractable probabilistic inferences. I do a lot of <a href="https://ellis.social/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> stuff and care strongly about priors.</p><p>See: <a href="https://trappmartin.github.io" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="">trappmartin.github.io</span><span class="invisible"></span></a></p>
Martin Trapp<p>Ok, I’m finally going start making a blog and writing posts about topics related to <a href="https://fediscience.org/tags/tractability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tractability</span></a> <a href="https://fediscience.org/tags/BayesianInference" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BayesianInference</span></a> <a href="https://fediscience.org/tags/nonparametrics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nonparametrics</span></a> and <a href="https://fediscience.org/tags/deeplearing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>deeplearing</span></a>.</p>