mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.7K
active users

#glm

0 posts0 participants0 posts today
1337 $#!+ I did that<p>Paul Krugman is one of my heros but he is wrong about <a href="https://mastodon.social/tags/crypto" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>crypto</span></a> being strings of ones and zeros on servers that do nothing. The left is wrong about this too. Ok, chill, you are all correct about Bitcoin, it is crap. But <a href="https://mastodon.social/tags/eth" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>eth</span></a> and <a href="https://mastodon.social/tags/xrp" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>xrp</span></a>, not nothing. They do things, they are programmable. <a href="https://mastodon.social/tags/tez" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tez</span></a> is a great, fast low carbon crypto, and <a href="https://mastodon.social/tags/storj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>storj</span></a>, <a href="https://mastodon.social/tags/fet" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fet</span></a> and <a href="https://mastodon.social/tags/glm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glm</span></a> are all infrastructure compute cryptos. They are good for something, you can create S3 buckets with <a href="https://mastodon.social/tags/storj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>storj</span></a>! Go ahead and hate, and be left behind.</p>
TheTransmitted<p>Нова модель штучного інтелекту GLM від компанії Contextual AI&nbsp;демонструє надзвичайну точність відповідей, випереджаючи технології від Google, Anthropic та&nbsp;OpenAI, що&nbsp;може суттєво вплинути на&nbsp;використання ШІ&nbsp;у&nbsp;бізнесі.</p><p><a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/ContextualAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ContextualAI</span></a> <a href="https://mastodon.social/tags/GLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GLM</span></a> <a href="https://mastodon.social/tags/LLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLM</span></a> <a href="https://mastodon.social/tags/%D0%A8%D0%86" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ШІ</span></a></p><p><a href="https://thetransmitted.com/ai/nova-model-shtuchnogo-intelektu-vid-contextual-ai-perevershyla-gpt-4o-za-tochnistyu/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">thetransmitted.com/ai/nova-mod</span><span class="invisible">el-shtuchnogo-intelektu-vid-contextual-ai-perevershyla-gpt-4o-za-tochnistyu/</span></a></p>
KINEWS24<p>Zhipu AI trotzt US-Bann mit Mega-Finanzierung</p><p>- Staatliche Investoren steigen ein<br>- Expansion des GLM-Sprachmodells<br>- Chinas KI-Sektor wächst rasant</p><p><a href="https://mastodon.social/tags/ai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ai</span></a> <a href="https://mastodon.social/tags/ki" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ki</span></a> <a href="https://mastodon.social/tags/artificialintelligence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>artificialintelligence</span></a> <a href="https://mastodon.social/tags/zhipuai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>zhipuai</span></a> <a href="https://mastodon.social/tags/GLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GLM</span></a> <a href="https://mastodon.social/tags/chinaai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>chinaai</span></a> </p><p><a href="https://kinews24.de/trotz-us-bann-chinesisches-ki-startup-zhipu-ai-sichert-sich-mega-finanzierung-von-137-millionen-dollar/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">kinews24.de/trotz-us-bann-chin</span><span class="invisible">esisches-ki-startup-zhipu-ai-sichert-sich-mega-finanzierung-von-137-millionen-dollar/</span></a></p>
JMLR<p>'Selective Inference with Distributed Data', by Sifan Liu, Snigdha Panigrahi.</p><p><a href="http://jmlr.org/papers/v26/23-0309.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v26/23-0309.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/lasso" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>lasso</span></a> <a href="https://sigmoid.social/tags/glm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glm</span></a> <a href="https://sigmoid.social/tags/sparse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sparse</span></a></p>
Ben Cardoen<p>I'm looking for papers that discuss the limitations of generalized linear models in the presence of long- or heavy-tail data (bordering on extreme value theory problems), any pointers would be appreciated. To be precise, the long tail values would be valid measurements of importance, not outliers (using the definition where outliers are defined as range/measurement errors). <a href="https://mstdn.science/tags/statistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistics</span></a> <a href="https://mstdn.science/tags/glm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glm</span></a> <a href="https://mstdn.science/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a> <a href="https://mstdn.science/tags/longtail" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>longtail</span></a> <a href="https://mstdn.science/tags/heavytail" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>heavytail</span></a> <a href="https://mstdn.science/tags/academia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>academia</span></a></p>
cmam<p>Ces images de <a href="https://piaille.fr/tags/GOESEast" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GOESEast</span></a> 🛰️ de la NOAA fournissent des images visibles des nuages ​​toutes les 30 secondes de l'<a href="https://piaille.fr/tags/ouragan" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ouragan</span></a> <a href="https://piaille.fr/tags/Milton" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Milton</span></a>, alors qu'il se rapproche de la Floride.<br>On peut aussi observer les fréquents éclairs détectés par l'instrument <a href="https://piaille.fr/tags/GLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GLM</span></a> du satellite.</p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #193 A Tutorial for Circular Data Analysis Using R</p><p>Thoughts: Ever hear of circular data? Maybe that time-series analysis is looking a bit cyclical? Here are some ways to analyse it.</p><p><a href="https://mastodon.social/tags/dataanalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataanalysis</span></a> <a href="https://mastodon.social/tags/data" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>data</span></a> <a href="https://mastodon.social/tags/circulardata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>circulardata</span></a> <a href="https://mastodon.social/tags/glm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glm</span></a> <a href="https://mastodon.social/tags/anova" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>anova</span></a> <a href="https://mastodon.social/tags/R" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>R</span></a> <a href="https://mastodon.social/tags/bpnreg" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bpnreg</span></a></p><p><a href="https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2018.02040/full" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">frontiersin.org/journals/psych</span><span class="invisible">ology/articles/10.3389/fpsyg.2018.02040/full</span></a></p>
R-Ladies Bot<p>📝 "DHARMa - Diagnostics for General Linear Models"</p><p>👤 Steffi LaZerte (<span class="h-card" translate="no"><a href="https://fosstodon.org/@steffilazerte" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>steffilazerte</span></a></span>) </p><p>🔗 <a href="https://steffilazerte.ca/posts/dharma/index.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">steffilazerte.ca/posts/dharma/</span><span class="invisible">index.html</span></a></p><p><a href="https://botsin.space/tags/rladies" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rladies</span></a> <a href="https://botsin.space/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a> <a href="https://botsin.space/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a> <a href="https://botsin.space/tags/lm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>lm</span></a> <a href="https://botsin.space/tags/diagnostics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>diagnostics</span></a> <a href="https://botsin.space/tags/glm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glm</span></a> <a href="https://botsin.space/tags/r" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>r</span></a></p>
JMLR<p>'Mixed Regression via Approximate Message Passing', by Nelvin Tan, Ramji Venkataramanan.</p><p><a href="http://jmlr.org/papers/v24/23-0473.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v24/23-0473.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/estimation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>estimation</span></a> <a href="https://sigmoid.social/tags/glm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glm</span></a> <a href="https://sigmoid.social/tags/regression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>regression</span></a></p>
Le Néandertal sous benzo<p>Is there a classical regression model where, for 𝑖=1,…,𝑛,</p><p>𝐸(𝑌ᵢ) = 𝑁 𝑝ᵢ </p><p>with 𝑁 a known constant, and</p><p>𝑝ᵢ=(exp 𝑋ᵢ β) / (∑ⱼ exp 𝑋ⱼ β)</p><p>Thus 𝑝ᵢ ∈ (0,1) and ∑ 𝑝ᵢ = 1. </p><p>Note that this is *not* a multinomial logistic regression. There is a single vector β to estimate. It should be estimated from a single set of observations 𝑌₁,…,𝑌ₙ (and the covariates 𝑋₁,…, 𝑋ₙ).</p><p><a href="https://mathstodon.xyz/tags/statistics" class="mention hashtag" rel="tag">#<span>statistics</span></a> <a href="https://mathstodon.xyz/tags/statisticalmodel" class="mention hashtag" rel="tag">#<span>statisticalmodel</span></a> <a href="https://mathstodon.xyz/tags/glm" class="mention hashtag" rel="tag">#<span>glm</span></a> <a href="https://mathstodon.xyz/tags/rstats" class="mention hashtag" rel="tag">#<span>rstats</span></a></p>
Christos Argyropoulos MD, PhD<p>This is an example that compares fitting a <a href="https://mstdn.science/tags/logistic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>logistic</span></a> regression as a <a href="https://mstdn.science/tags/generalized" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>generalized</span></a> <a href="https://mstdn.science/tags/linear" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>linear</span></a> <a href="https://mstdn.science/tags/model" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>model</span></a> <a href="https://mstdn.science/tags/GLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GLM</span></a> &amp; as an <a href="https://mstdn.science/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://mstdn.science/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MachineLearning</span></a> using <a href="https://mstdn.science/tags/tensorflow" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tensorflow</span></a>. Marvel at the computational waste (number of epochs ; a typical IWLS <a href="https://mstdn.science/tags/GLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GLM</span></a> fit converges in &lt;10 iterations) <a href="https://atm.amegroups.org/article/view/30334/html" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">atm.amegroups.org/article/view</span><span class="invisible">/30334/html</span></a></p>
Jeroen Baert<p>Very very very specific problem, but here goes: I've updated to <a href="https://mastodon.social/tags/CUDA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CUDA</span></a> 12.1 and found out that using <a href="https://mastodon.social/tags/GLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GLM</span></a> straight up crashes nvcc in 64-bit debug mode compiling. Release mode has no problems. Anyone got tips or (pun intended) pointers? (Latest MSVC, latest GLM, latest CUDA) Switching SM architectures doesn't help.</p><p>Thinking of ditching GLM entirely and just rolling my own vector math, but feels wrong.</p>
Theo Watson<p>Bashing my head against a wall today trying to get a nice paper airplane motion. Reading papers on Lift coefficients vs attack angles and wondering if this is overkill? <a href="https://mastodon.art/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mastodon.art/tags/glm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glm</span></a> <a href="https://mastodon.art/tags/openframeworks" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>openframeworks</span></a></p>
Ted Underwood<p>Thread from @AndyChenML@twitter.com arguing that <a href="https://sigmoid.social/tags/GLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GLM</span></a>-130B beats GPT-175B, is open source, and can run on a single A100 with 4-bit quantization: <a href="https://sigmoid.social/tags/llm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>llm</span></a> <a href="https://twitter.com/andychenml/status/1611529311390949376?s=46&amp;t=jgk40-JPcPZRoMLFx1B0tw" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">twitter.com/andychenml/status/</span><span class="invisible">1611529311390949376?s=46&amp;t=jgk40-JPcPZRoMLFx1B0tw</span></a></p>
Gabby Palomo, PhD<p>Cheatsheet for linear regression in r. <a href="https://fosstodon.org/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a> <a href="https://fosstodon.org/tags/linearRegression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>linearRegression</span></a> <a href="https://fosstodon.org/tags/glm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glm</span></a> <a href="https://fosstodon.org/tags/cheatsheets" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cheatsheets</span></a> <br> I’m trying not top post things from the bad place but this one is really good! <br>Originally posted by Ben Larson blarson424 on the bird site.</p>
kandid<p><span class="h-card"><a href="https://merveilles.town/@nasser" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>nasser</span></a></span> <br>Could this be it ?<br><a href="https://chaos.social/tags/glm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glm</span></a> <a href="https://chaos.social/tags/glsl" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glsl</span></a></p><p><a href="https://github.com/g-truc/glm" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="">github.com/g-truc/glm</span><span class="invisible"></span></a></p>