mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

3K
active users

#geometry

23 posts19 participants0 posts today
Albert P. Carpenter<p>3D print based on design by Tadeusz Dorozinski <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="tag">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/stem" class="mention hashtag" rel="tag">#<span>stem</span></a> <a href="https://mathstodon.xyz/tags/steam" class="mention hashtag" rel="tag">#<span>steam</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="tag">#<span>polyhedra</span></a> <a href="https://mathstodon.xyz/tags/3dprinting" class="mention hashtag" rel="tag">#<span>3dprinting</span></a> <a href="https://mathstodon.xyz/tags/3dprintedmath" class="mention hashtag" rel="tag">#<span>3dprintedmath</span></a> @thingiverse @cults3d</p>
Albert P. Carpenter<p>2 knots: trefoil and pentafoil composed of rhombicosidodecahedra that can represent points as well <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/topology" class="mention hashtag" rel="tag">#<span>topology</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/geometrictopology" class="mention hashtag" rel="tag">#<span>geometrictopology</span></a> <a href="https://mathstodon.xyz/tags/knots" class="mention hashtag" rel="tag">#<span>knots</span></a> <a href="https://mathstodon.xyz/tags/knottheory" class="mention hashtag" rel="tag">#<span>knottheory</span></a></p>
Jean-Baptiste Etienne<p>🐍 🐍 🐍 </p><p><a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="tag">#<span>geogebra</span></a> file :<a href="https://www.geogebra.org/m/tfqb4egm" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://www.</span><span class="">geogebra.org/m/tfqb4egm</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/hexagon" class="mention hashtag" rel="tag">#<span>hexagon</span></a> <a href="https://mathstodon.xyz/tags/spiral" class="mention hashtag" rel="tag">#<span>spiral</span></a> <a href="https://mathstodon.xyz/tags/polygonales" class="mention hashtag" rel="tag">#<span>polygonales</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="tag">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/fun" class="mention hashtag" rel="tag">#<span>fun</span></a></p>
Albert P. Carpenter<p>Klein surface <a href="https://mathstodon.xyz/tags/Kleinbottle" class="mention hashtag" rel="tag">#<span>Kleinbottle</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/topology" class="mention hashtag" rel="tag">#<span>topology</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a></p>
Albert P. Carpenter<p>With over 1500 math models and art, I happily invite all to come and explore. I hope there will be something to inspire you! All the content is in the creative commons. So, feel free to use it! <a href="https://sites.google.com/view/structuralgeometry/home" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">sites.google.com/view/structur</span><span class="invisible">algeometry/home</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/topology" class="mention hashtag" rel="tag">#<span>topology</span></a> <a href="https://mathstodon.xyz/tags/3dprinting" class="mention hashtag" rel="tag">#<span>3dprinting</span></a> <a href="https://mathstodon.xyz/tags/3dprintedmath" class="mention hashtag" rel="tag">#<span>3dprintedmath</span></a></p>
Jean-Baptiste Etienne<p>🐍 </p><p><a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/hexagon" class="mention hashtag" rel="tag">#<span>hexagon</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="tag">#<span>geogebra</span></a></p>
Dani Laura (they/she/he)<p>These two art pieces are based on the deformation of a hexagonal tiling into a topologically equivalent &quot;tiling&quot; composed of parts of concentric circles, all parts having the same area (third image). Selecting one hexagon as the center, we transform it into a circle of radius 1. Next concentric circle will hold the 6 adjacent tiles as sectors of rings. And so on, the circle of level n will have radius sqrt(1+3·n·(n+1)) (difference of radius when n tends to infinity approaches sqrt(3)). This map can be coloured with three colours, like the hexagonal tiling. For the artwork, suppose each sector of ring is in fact a sector of a circle hidden by inner pieces. Then choose a colour and delete all pieces not of this colour. Two distinct set of sectors can be produced, one choosing the central colour, one choosing another colour. Finally recolour the pieces according to its size.<br /><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="tag">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/Art" class="mention hashtag" rel="tag">#<span>Art</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="tag">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="tag">#<span>tiling</span></a></p>
Alessandro CesarRoma.<br> <br> <br> <a href="https://pixelfed.social/discover/tags/architecture?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#architecture</a> <a href="https://pixelfed.social/discover/tags/structure?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#structure</a> <a href="https://pixelfed.social/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#geometry</a> <a href="https://pixelfed.social/discover/tags/perspective?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#perspective</a> <a href="https://pixelfed.social/discover/tags/bnwphotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#bnwphotography</a> <a href="https://pixelfed.social/discover/tags/urbanexploration?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#urbanexploration</a> <a href="https://pixelfed.social/discover/tags/photography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#photography</a>-bw <a href="https://pixelfed.social/discover/tags/blackandwhitephotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#blackandwhitephotography</a> <a href="https://pixelfed.social/discover/tags/pretoebranco?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#pretoebranco</a> <a href="https://pixelfed.social/discover/tags/bnw?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#bnw</a>
FotoapparatContrasted shaped blocks. Namen, 03.2025<br> ilford hp5 plus 400<br> <a href="https://pixelfed.social/discover/tags/filmphotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#filmphotography</a> <a href="https://pixelfed.social/discover/tags/urbanphotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#urbanphotography</a> <a href="https://pixelfed.social/discover/tags/streetphotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#streetphotography</a> <a href="https://pixelfed.social/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#geometry</a> <a href="https://pixelfed.social/discover/tags/blackandwhite?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#blackandwhite</a>
Albert P. Carpenter<p>Graphic design of a Stewart star dodecahedral polytoroid and 3D print: design components: cubes, J92s, J5s, decagonal pyramids. <a href="https://mathstodon.xyz/tags/3dprintedmath" class="mention hashtag" rel="tag">#<span>3dprintedmath</span></a> <a href="https://mathstodon.xyz/tags/3dprinting" class="mention hashtag" rel="tag">#<span>3dprinting</span></a> <a href="https://mathstodon.xyz/tags/stem" class="mention hashtag" rel="tag">#<span>stem</span></a> <a href="https://mathstodon.xyz/tags/steam" class="mention hashtag" rel="tag">#<span>steam</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="tag">#<span>polyhedra</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="tag">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/art" class="mention hashtag" rel="tag">#<span>art</span></a></p>
Dani Laura (they/she/he)<p>Continuing with fractals related to squares and silver ratio diminution, a new creature of the fractal sea, along with the underlying squares version.<br /><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="tag">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/art" class="mention hashtag" rel="tag">#<span>art</span></a> <a href="https://mathstodon.xyz/tags/SilverRatio" class="mention hashtag" rel="tag">#<span>SilverRatio</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="tag">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="tag">#<span>fractal</span></a></p>
Geometry + Dynamics Heidelberg<p>The game Dobble/Spot It! has an interpretation within projective geometry. The game with 7 different symbols then corresponds to the Fano-Plane. A model for this can be seen in the picture above, and is also available for you to print yourself: <a href="https://www.thingiverse.com/thing:5210739" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://www.</span><span class="">thingiverse.com/thing:5210739</span><span class="invisible"></span></a><br /><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a></p>
Alb_<p>Penrose triangle</p><p><a href="https://mastodon.social/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mastodon.social/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mastodon.social/tags/impossible" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>impossible</span></a></p>
Jenny Lam<p>Peering down the spiral <a href="https://mastodon.art/tags/staircase" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>staircase</span></a> in JC Contemporary last week. 🐚 I was pleasantly surprised to find it was open because of Central Galleries Day (normally it’s closed on Mondays). Tai Kwun, <a href="https://mastodon.art/tags/HongKong" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HongKong</span></a>.</p><p><a href="https://mastodon.art/tags/ShotoniPhone" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ShotoniPhone</span></a> <a href="https://mastodon.art/tags/MobilePhotography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MobilePhotography</span></a> <a href="https://mastodon.art/tags/Photography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Photography</span></a> <a href="https://mastodon.art/tags/Photo" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Photo</span></a> <a href="https://mastodon.art/tags/TravelPhotography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TravelPhotography</span></a> <a href="https://mastodon.art/tags/Travel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Travel</span></a> <a href="https://mastodon.art/tags/Architecture" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Architecture</span></a> <a href="https://mastodon.art/tags/Interior" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Interior</span></a> <a href="https://mastodon.art/tags/Interiors" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Interiors</span></a> <a href="https://mastodon.art/tags/Building" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Building</span></a> <a href="https://mastodon.art/tags/Geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geometry</span></a> <a href="https://mastodon.art/tags/City" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>City</span></a> <a href="https://mastodon.art/tags/CityLife" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CityLife</span></a> <a href="https://mastodon.art/tags/Urban" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Urban</span></a> <a href="https://mastodon.art/tags/UrbanPhotography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UrbanPhotography</span></a> <a href="https://mastodon.art/tags/ArtGallery" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ArtGallery</span></a> <a href="https://mastodon.art/tags/Gallery" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Gallery</span></a></p>
꧁ᐊ𰻞ᵕ̣̣̣̣̣̣́́♛ᵕ̣̣̣̣̣̣́́𰻞ᐅ꧂<p><a href="https://mastodon.gamedev.place/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> 2d cross-section of an 8d point arrangement in ðe hypercubic honeycomb, wiθ 1 point at ðe center of each non-vertex facet &amp; a sphere 10^-5 times ðe radius at ðe center of each 8-cube 𓅱</p><p><a href="https://mastodon.gamedev.place/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mastodon.gamedev.place/tags/cursed" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cursed</span></a> <a href="https://mastodon.gamedev.place/tags/abstract" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>abstract</span></a> <a href="https://mastodon.gamedev.place/tags/art" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>art</span></a></p>
X Over Zero🎭 April Fools!! 🎭<br> <br> Happy April Fools' Day to all who celebrate!<br> <br> We kept a straight face for the past five posts, but it’s time to come clean—OPULENZ, our sterling silver eyeglasses, are an elaborate April Fools' gag. Did we get you? 😆 We hope you enjoyed the gradual descent into madness of our silly 'ad copy' style captions as much as we enjoyed writing them.<br> <br> While we are developing solid sterling silver eyewear for a future release, this particular pair—complete with giant, eye-gouging faceted gem lenses—was designed purely for fun.<br> <br> Our serious take on heirloom eyewear is in the works. Stay tuned. 👀<br> <br> With love,<br> Katherine &amp; Duane<br> <br> <a href="https://pixelfed.social/discover/tags/aprilfools?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#aprilfools</a> <a href="https://pixelfed.social/discover/tags/aprilfoolsday?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#aprilfoolsday</a> <a href="https://pixelfed.social/discover/tags/portrait?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#portrait</a> <a href="https://pixelfed.social/discover/tags/lol?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#lol</a> <a href="https://pixelfed.social/discover/tags/designer?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#designer</a> <a href="https://pixelfed.social/discover/tags/jewelry?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#jewelry</a> <a href="https://pixelfed.social/discover/tags/silver?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#silver</a> <a href="https://pixelfed.social/discover/tags/heirloom?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#heirloom</a> <a href="https://pixelfed.social/discover/tags/accessories?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#accessories</a> <a href="https://pixelfed.social/discover/tags/fashion?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#fashion</a> <a href="https://pixelfed.social/discover/tags/ファッション?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#ファッション</a> <a href="https://pixelfed.social/discover/tags/slowfashion?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#slowfashion</a> <a href="https://pixelfed.social/discover/tags/art?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#art</a> <a href="https://pixelfed.social/discover/tags/design?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#design</a> <a href="https://pixelfed.social/discover/tags/デザイン?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#デザイン</a> <a href="https://pixelfed.social/discover/tags/style?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#style</a> <a href="https://pixelfed.social/discover/tags/glasses?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#glasses</a> <a href="https://pixelfed.social/discover/tags/eyewear?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#eyewear</a> <a href="https://pixelfed.social/discover/tags/OOTD?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#OOTD</a> <a href="https://pixelfed.social/discover/tags/costume?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#costume</a> <a href="https://pixelfed.social/discover/tags/gem?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#gem</a> <a href="https://pixelfed.social/discover/tags/abstract?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#abstract</a> <a href="https://pixelfed.social/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#geometry</a> <a href="https://pixelfed.social/discover/tags/Pixelfed?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#Pixelfed</a> <a href="https://pixelfed.social/discover/tags/Fediverse?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#Fediverse</a>
jackpixley<p>142857 x 1 = 142857<br>142857 x 2 = 285714<br>142857 x 3 = 428571<br>142857 x 4 = 571428<br>142857 x 5 = 714285<br>142857 x 6 = 857142<br>142857 x 7 = 999999</p><p>1/7 = 0.142857<br>2/7 = 0.285714<br>3/7 = 0.428571<br>4/7 = 0.571428<br>5/7 = 0.714285<br>6/7 = 0.857142<br>7/7 = 0.999999 [?!]</p><p>to be continued</p><p><a href="https://w3c.social/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://w3c.social/tags/sacredgeometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sacredgeometry</span></a> <a href="https://w3c.social/tags/enneagram" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>enneagram</span></a> <a href="https://w3c.social/tags/nine" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nine</span></a> <a href="https://w3c.social/tags/lawofseven" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>lawofseven</span></a> <a href="https://w3c.social/tags/lawofthree" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>lawofthree</span></a> <a href="https://w3c.social/tags/pi" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pi</span></a> <a href="https://w3c.social/tags/%CE%A0" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Π</span></a></p>
n-gons<p>Dodecagon decomposition for <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="tag">#<span>TilingTuesday</span></a> </p><p><a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="tag">#<span>Tiling</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="tag">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="tag">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/Art" class="mention hashtag" rel="tag">#<span>Art</span></a></p>
Albert P. Carpenter<p>Kepler-Fathauer topographical walkabout dodecahedral polytorid inspired by mathematician and astronomer Johannes Kepler and mathematical artist Robert Fathauer <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="tag">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="tag">#<span>polyhedra</span></a></p>
Albert P. Carpenter<p>3D print of a Hart dodecahedral polyknot inspired by sculptor George Hart with graphic design <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="tag">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/3dprinting" class="mention hashtag" rel="tag">#<span>3dprinting</span></a> <a href="https://mathstodon.xyz/tags/3dprintedmath" class="mention hashtag" rel="tag">#<span>3dprintedmath</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/topology" class="mention hashtag" rel="tag">#<span>topology</span></a> <a href="https://mathstodon.xyz/tags/knots" class="mention hashtag" rel="tag">#<span>knots</span></a> <a href="https://mathstodon.xyz/tags/knottheory" class="mention hashtag" rel="tag">#<span>knottheory</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="tag">#<span>polyhedra</span></a> More of my math art can be seen at: <a href="https://sites.google.com/view/structuralgeometry/home?pli=1" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">sites.google.com/view/structur</span><span class="invisible">algeometry/home?pli=1</span></a></p>