mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.8K
active users

#functor

0 posts0 participants0 posts today
João Esperancinha<p>The documentation for my video on Monads, Monoids and Functors is available on Scribd everyone <a href="https://masto.ai/tags/kotlin" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kotlin</span></a> <a href="https://masto.ai/tags/haskell" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>haskell</span></a> <a href="https://masto.ai/tags/mona" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mona</span></a> <a href="https://masto.ai/tags/monoid" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>monoid</span></a> <a href="https://masto.ai/tags/functor" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>functor</span></a> <br> <a href="https://www.scribd.com/presentation/779087903/Monads-Are-No-Nomads" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">scribd.com/presentation/779087</span><span class="invisible">903/Monads-Are-No-Nomads</span></a></p>
João Esperancinha<p>My new video about functors, monoids and monads everyone! Watch for free on JESPROTECH. <a href="https://masto.ai/tags/functor" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>functor</span></a> <a href="https://masto.ai/tags/monads" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>monads</span></a> <a href="https://masto.ai/tags/monoids" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>monoids</span></a> <a href="https://masto.ai/tags/haskell" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>haskell</span></a> <a href="https://masto.ai/tags/kotlin" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kotlin</span></a> <a href="https://www.youtube.com/watch?v=ShGAN0dguUg&amp;si=gcV2XlRvZE3OTXTZ" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=ShGAN0dguU</span><span class="invisible">g&amp;si=gcV2XlRvZE3OTXTZ</span></a></p>
João Esperancinha<p>The playlist "Monads are no Nomads" is gaining momentum, everyone! The playlist is rich with examples in Kotlin and Haskell. Why Haskell? Because Haskel is one of the languages that lays the foundations of pure functional programming. A bizarre word to describe a great concept over here:</p><p><a href="https://masto.ai/tags/monad" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>monad</span></a> <a href="https://masto.ai/tags/functor" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>functor</span></a> <a href="https://masto.ai/tags/kotlin" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>kotlin</span></a> <a href="https://masto.ai/tags/haskell" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>haskell</span></a> <a href="https://masto.ai/tags/coding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>coding</span></a> </p><p><a href="https://youtube.com/playlist?list=PLw1b-aiSLRZhpqdS2lJ9ACithA1HxpuwL&amp;si=Hmj004ohkw9CaRSD" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">youtube.com/playlist?list=PLw1</span><span class="invisible">b-aiSLRZhpqdS2lJ9ACithA1HxpuwL&amp;si=Hmj004ohkw9CaRSD</span></a></p>
João Esperancinha<p>I have added 8 more videos to my playlist "Monads are no Nomads". Have a look at the last one where I talk about composition in Haskell:</p><p><a href="https://masto.ai/tags/haskell" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>haskell</span></a> <a href="https://masto.ai/tags/composition" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>composition</span></a> <a href="https://masto.ai/tags/code" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>code</span></a> <a href="https://masto.ai/tags/functor" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>functor</span></a></p><p><a href="https://youtube.com/shorts/dirV589Xapg?feature=share" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">youtube.com/shorts/dirV589Xapg</span><span class="invisible">?feature=share</span></a></p>
Jencel Panic<p>Short <a href="https://mathstodon.xyz/tags/categorytheory" class="mention hashtag" rel="tag">#<span>categorytheory</span></a> lesson: There is a common figure of speech, that goes like &quot;If x is like y, then z is like q&quot;, e.g. &quot;If a school are like a corporation, then the teachers are like bosses&quot;. This figure of speech introduces a <a href="https://mathstodon.xyz/tags/functor" class="mention hashtag" rel="tag">#<span>functor</span></a>: what are you saying is that there is a certain connection (or category-theory therms a &quot;morphism&quot;) between schools and teachers, that is similar to the connection between corporations and bosses i.e. that there is some kind of structure preserving map that connects the category of school-related things, to the category of work-related things in which schools (a) are mapped to corporations (F a) and teacher (b) are mapped to bosses (F b). and the connections between schools and teachers (a -&gt; b) are mapped to the connections between corporations and bosses (F a -&gt; F b).</p>
das-g<p><span class="h-card"><a href="https://icosahedron.website/@nuttycom" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>nuttycom</span></a></span> <span class="h-card"><a href="https://social.jlamothe.net/profile/me" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>me</span></a></span> If we agree that "map" is a good name for what "fmap" does (and as a non-native speaker of English, I think it is), then the adjectival-ish name of Functor could simply be "Mappable".</p><p><a href="https://chaos.social/tags/fmap" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fmap</span></a> <a href="https://chaos.social/tags/Functor" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Functor</span></a> <a href="https://chaos.social/tags/namingThings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>namingThings</span></a></p>
⎯ΘωΘ⟶<p>Recall that a <a href="https://mathstodon.xyz/tags/colimit" class="mention hashtag" rel="tag">#<span>colimit</span></a> of a <a href="https://mathstodon.xyz/tags/diagram" class="mention hashtag" rel="tag">#<span>diagram</span></a> in a <a href="https://mathstodon.xyz/tags/category" class="mention hashtag" rel="tag">#<span>category</span></a> C, that is, of a <a href="https://mathstodon.xyz/tags/functor" class="mention hashtag" rel="tag">#<span>functor</span></a> F:J→C, is <a href="https://mathstodon.xyz/tags/given" class="mention hashtag" rel="tag">#<span>given</span></a> by a <a href="https://mathstodon.xyz/tags/universal" class="mention hashtag" rel="tag">#<span>universal</span></a> [[<a href="https://mathstodon.xyz/tags/cocone" class="mention hashtag" rel="tag">#<span>cocone</span></a>]] for F. A [[<a href="https://mathstodon.xyz/tags/co" class="mention hashtag" rel="tag">#<span>co</span></a> <a href="https://mathstodon.xyz/tags/cone" class="mention hashtag" rel="tag">#<span>cone</span></a>]] for F is a <a href="https://mathstodon.xyz/tags/natural" class="mention hashtag" rel="tag">#<span>natural</span></a> <a href="https://mathstodon.xyz/tags/transformation" class="mention hashtag" rel="tag">#<span>transformation</span></a> from F to a <a href="https://mathstodon.xyz/tags/constant" class="mention hashtag" rel="tag">#<span>constant</span></a> diagram,</p><p>Δ(c)=(J→1→cC),</p><p>so that a cocone for F is an <a href="https://mathstodon.xyz/tags/object" class="mention hashtag" rel="tag">#<span>object</span></a> of a <a href="https://mathstodon.xyz/tags/comma" class="mention hashtag" rel="tag">#<span>comma</span></a> category,</p><p>F↓Δ,</p><p>where Δ:C1→CJ is the <a href="https://mathstodon.xyz/tags/diagonal" class="mention hashtag" rel="tag">#<span>diagonal</span></a> functor <a href="https://mathstodon.xyz/tags/obtained" class="mention hashtag" rel="tag">#<span>obtained</span></a> by <a href="https://mathstodon.xyz/tags/pulling" class="mention hashtag" rel="tag">#<span>pulling</span></a> <a href="https://mathstodon.xyz/tags/back" class="mention hashtag" rel="tag">#<span>back</span></a> <a href="https://mathstodon.xyz/tags/along" class="mention hashtag" rel="tag">#<span>along</span></a> the <a href="https://mathstodon.xyz/tags/unique" class="mention hashtag" rel="tag">#<span>unique</span></a> functor J→1. A universal cocone is <a href="https://mathstodon.xyz/tags/simply" class="mention hashtag" rel="tag">#<span>simply</span></a> an <a href="https://mathstodon.xyz/tags/initial" class="mention hashtag" rel="tag">#<span>initial</span></a> object of F↓Δ.</p>