mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.8K
active users

#exponentiation

0 posts0 participants0 posts today
David Grayless<p>In <a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a>, a polynomial is a <a href="https://mastodon.social/tags/mathematicalExpression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematicalExpression</span></a> consisting of <a href="https://mastodon.social/tags/indeterminates" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>indeterminates</span></a> (also called <a href="https://mastodon.social/tags/variables" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>variables</span></a>) and <a href="https://mastodon.social/tags/coefficients" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>coefficients</span></a>, that involves only the operations of <a href="https://mastodon.social/tags/addition" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>addition</span></a>, <a href="https://mastodon.social/tags/subtraction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>subtraction</span></a>, <a href="https://mastodon.social/tags/multiplication" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>multiplication</span></a> and <a href="https://mastodon.social/tags/exponentiation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>exponentiation</span></a> to <a href="https://mastodon.social/tags/nonnegativeInteger" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nonnegativeInteger</span></a> powers, and has a finite number of <a href="https://mastodon.social/tags/terms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>terms</span></a>. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2 − yz + 1. <a href="https://mastodon.social/tags/Polynomials" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polynomials</span></a> appear in many areas of mathematics and science.</p>
Prof. Sally Keely<p>Attn Calc II students: This is a fun little integral. \( \int 2^{\ln(x)}dx \) A substitition \( u=\ln(x) \) won&#39;t work since there is no \( \frac{1}{x} \) to make the match. <a href="https://mathstodon.xyz/tags/integration" class="mention hashtag" rel="tag">#<span>integration</span></a> <a href="https://mathstodon.xyz/tags/exponentiation" class="mention hashtag" rel="tag">#<span>exponentiation</span></a></p><p>Think about before reading on.</p><p>Nifty trick! Since \( 2=e^{\ln(2)} \), then \( 2^{\ln(x)} = (e^{\ln(2)})^{\ln(x)}=(e^{\ln(x)})^{\ln(2)}=x^{\ln(2)} \) </p><p>Now the integral becomes \( \int x^{\ln(2)}dx = \frac{1}{1+ln(2)} x^{1+\ln(2)} + C \) </p><p>Swapping from an constant-to-variable to a variable-to-constant made a world of difference. Sweet!</p>
tc<p><a href="https://mathstodon.xyz/tags/functionalprogramming" class="mention hashtag" rel="tag">#<span>functionalprogramming</span></a> </p><p>Many people&#39;s vote for most <a href="https://mathstodon.xyz/tags/beautiful" class="mention hashtag" rel="tag">#<span>beautiful</span></a> construct in <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> is \[ e^{i\pi}+1=0. \]</p><p>Yeah, maybe. But I think a close contender (if you include the <a href="https://mathstodon.xyz/tags/CS" class="mention hashtag" rel="tag">#<span>CS</span></a> realm) is \[ \lambda b.\lambda e.eb . \]</p><p>This serves as the complete <a href="https://mathstodon.xyz/tags/Church" class="mention hashtag" rel="tag">#<span>Church</span></a> encoding of <a href="https://mathstodon.xyz/tags/exponentiation" class="mention hashtag" rel="tag">#<span>exponentiation</span></a> in <a href="https://mathstodon.xyz/tags/LambdaCalculus" class="mention hashtag" rel="tag">#<span>LambdaCalculus</span></a>, driving home subtler points about <a href="https://mathstodon.xyz/tags/function" class="mention hashtag" rel="tag">#<span>function</span></a> <a href="https://mathstodon.xyz/tags/mapping" class="mention hashtag" rel="tag">#<span>mapping</span></a> and ordered pairs and the primacy of exponentiation over add/mult, both of which have uglier <a href="https://mathstodon.xyz/tags/LC" class="mention hashtag" rel="tag">#<span>LC</span></a> representations.</p><p><a href="https://en.wikipedia.org/wiki/Lambda_calculus#Arithmetic_in_lambda_calculus" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Lambda_c</span><span class="invisible">alculus#Arithmetic_in_lambda_calculus</span></a></p>
tc<p><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/education" class="mention hashtag" rel="tag">#<span>education</span></a> <a href="https://mathstodon.xyz/tags/school" class="mention hashtag" rel="tag">#<span>school</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="tag">#<span>arithmetic</span></a> </p><p>At risk of pointing out the obvious, here&#39;s something that didn&#39;t occur to me in these plain terms until last week:</p><p>Everyone from little kids on up understands base-10 numbers to one degree or another, and yet decoding place-value <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="tag">#<span>numbers</span></a> requires using <a href="https://mathstodon.xyz/tags/addition" class="mention hashtag" rel="tag">#<span>addition</span></a>, <a href="https://mathstodon.xyz/tags/multiplication" class="mention hashtag" rel="tag">#<span>multiplication</span></a>, and <a href="https://mathstodon.xyz/tags/exponentiation" class="mention hashtag" rel="tag">#<span>exponentiation</span></a> in concert.</p>