mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.8K
active users

#enwp

0 posts0 participants0 posts today
アローラのポンスレ定理🍣┗(↑o↑)┛<エゥンェゥゥゥゥゥン<p>壁打ちはこのポジティブフィードバックがあるからやめられねえ、偶然見た貧相な日本語の記事 <a href="https://fla.red/tags/jawp" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>JAWP</span></a> 「双心四角形」 <a href="https://ja.wikipedia.org/wiki/%E5%8F%8C%E5%BF%83%E5%9B%9B%E8%A7%92%E5%BD%A2" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">ja.wikipedia.org/wiki/%E5%8F%8</span><span class="invisible">C%E5%BF%83%E5%9B%9B%E8%A7%92%E5%BD%A2</span></a> 文章少ないとはいえ大事な部分がスグ分かってイイ!さらに <a href="https://fla.red/tags/enwp" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ENWP</span></a> 「Cyclic quadrilateral」 <a href="https://en.wikipedia.org/wiki/Cyclic_quadrilateral" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Cyclic_q</span><span class="invisible">uadrilateral</span></a> も見たら、四辺決まれば面積も外接円も二対角線も決まる形というややこしさ。ってかコレも三辺長固定で動かして最小半径になるのが双心四角形だったりするのか(最大は無限であることは自明)いや最小は丁度三角形になるときだろうし、ってか三角不等式的な辺の制約からやって、基本的には$a,c',b,a',c,b'$の六辺形をベースに考えるとか、むしろ本筋は四辺の和(周長)を一定な数 <a href="https://hayabusa.open2ch.net/test/read.cgi/news4vip/1475904354/" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">hayabusa.open2ch.net/test/read</span><span class="invisible">.cgi/news4vip/1475904354/</span></a> として三辺の比から最大最小外接円とかが面白いかも、まあやらんけど終</p>
㈰㈪㈫㈬㈭金正月<p>About &quot;One Generalization of Langley’s Adventitious Angles&quot; <a href="https://twitter.com/wasanp_/status/1112551634729463809" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">twitter.com/wasanp_/status/111</span><span class="invisible">2551634729463809</span></a> ( <a href="https://mathstodon.xyz/tags/ENWP" class="mention hashtag" rel="tag">#<span>ENWP</span></a> &quot;Langley’s Adventitious Angles <a href="https://mathstodon.xyz/tags/Generalization" class="mention hashtag" rel="tag">#<span>Generalization</span></a> &quot; <a href="https://en.wikipedia.org/wiki/Langley’s_Adventitious_Angles#Generalization" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Langley’</span><span class="invisible">s_Adventitious_Angles#Generalization</span></a> ) like a image, I do not know Euclid&#39;s elementary geometrical proof (?=30[°]). Thanks!</p><p>(Twitterでもインチキ英語他いろいろ間違ってたので、まあ添付図の問題が解ければ同様に解けそうだけど、俺は諦めたので)全く関係ないけど、土曜日に解かなきゃいけないと自分に課した問題として、ある人物が頑張っているという整数\( 0 \le p \le q \)の上で \(\sin\theta=\sqrt{\frac{p}{q}}\)となるθの規則性を知りたい的なピタゴラス整辺問題の純粋な拡張をどげんかせんと遷都せんといかん(続</p>
㈰㈪㈫㈬㈭金正月<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@jsiehler" class="u-url mention">@<span>jsiehler</span></a></span> Your discovery is very beautiful, and I find the answer &quot;a=55, b=44, c=29&quot;. First, I remembered <a href="https://mathstodon.xyz/tags/ENWP" class="mention hashtag" rel="tag">#<span>ENWP</span></a> &quot;Volume of a tetrahedron (Tartaglia&#39;s formula)=0&quot; <a href="https://en.wikipedia.org/wiki/Niccol%C3%B2_Fontana_Tartaglia#Volume_of_a_tetrahedron" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Niccol%C</span><span class="invisible">3%B2_Fontana_Tartaglia#Volume_of_a_tetrahedron</span></a> . Next, I tried to solve the equation b=36+x, c=26+y (x=1,2,…,9, y=1,2,…9) with <a href="https://mathstodon.xyz/tags/WolframAlpha" class="mention hashtag" rel="tag">#<span>WolframAlpha</span></a> <a href="https://www.wolframalpha.com/input/?i=det(%7B%7B0,10%5E2,26%5E2,36%5E2,1%7D,%7B10%5E2,0,(26%2B3)%5E2,(36%2B8)%5E2,1%7D,%7B26%5E2,(26%2B3)%5E2,0,a%5E2,1%7D,%7B36%5E2,(36%2B8)%5E2,a%5E2,0,1%7D,%7B1,1,1,1,0%7D%7D)%3D0" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://www.</span><span class="ellipsis">wolframalpha.com/input/?i=det(</span><span class="invisible">%7B%7B0,10%5E2,26%5E2,36%5E2,1%7D,%7B10%5E2,0,(26%2B3)%5E2,(36%2B8)%5E2,1%7D,%7B26%5E2,(26%2B3)%5E2,0,a%5E2,1%7D,%7B36%5E2,(36%2B8)%5E2,a%5E2,0,1%7D,%7B1,1,1,1,0%7D%7D)%3D0</span></a> (it can&#39;t be solved automatically, so I searched manually one by one.). The general solution was unknown to me, but I was very interesting!Thanks!</p>
㈰㈪㈫㈬㈭金正月<p>Now I found a related article in <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="tag">#<span>OEIS</span></a><br /><a href="http://oeis.org/A102766" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="">oeis.org/A102766</span><span class="invisible"></span></a><br />. It&#39;s seem to relate <a href="https://mathstodon.xyz/tags/ENWP" class="mention hashtag" rel="tag">#<span>ENWP</span></a> 「Kaprekar number」 <a href="https://en.wikipedia.org/wiki/Kaprekar_number" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Kaprekar</span><span class="invisible">_number</span></a> . It&#39;s new to me. Thanks!</p>
㈰㈪㈫㈬㈭金正月<p><a href="https://mathstodon.xyz/tags/ENWP" class="mention hashtag" rel="tag">#<span>ENWP</span></a> &quot;Machin-like formula&quot; <a href="https://en.wikipedia.org/wiki/Machin-like_formula" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Machin-l</span><span class="invisible">ike_formula</span></a><br />\[ 4\arctan \frac{1}{5} -\arctan \frac{1}{239} =\frac{\pi}{4} \]<br />, I like Eular&#39;s formula \(\displaystyle \frac{\pi}{4} =\arctan \frac{1}{2} +\arctan \frac{1}{3} \).<br />I use website &quot;Easy Copy <a href="https://mathstodon.xyz/tags/MathJax" class="mention hashtag" rel="tag">#<span>MathJax</span></a> &quot; <a href="http://easy-copy-mathjax.xxxx7.com/#trigonometric-function-etc" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://</span><span class="ellipsis">easy-copy-mathjax.xxxx7.com/#t</span><span class="invisible">rigonometric-function-etc</span></a></p>