mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.8K
active users

#dynamicalsystem

0 posts0 participants0 posts today
AlexCrimi<p><a href="https://mstdn.social/tags/simplicialcomplex" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>simplicialcomplex</span></a> + <a href="https://mstdn.social/tags/Causality" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Causality</span></a> +<a href="https://mstdn.social/tags/Reservoircomputing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Reservoircomputing</span></a>:<br>"Higher-order Granger reservoir computing: simultaneously achieving scalable complex structures inference and accurate dynamics prediction" <a href="https://www.nature.com/articles/s41467-024-46852-1" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nature.com/articles/s41467-024</span><span class="invisible">-46852-1</span></a></p><p><a href="https://mstdn.social/tags/dynamicalsystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dynamicalsystem</span></a> <a href="https://mstdn.social/tags/ML" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ML</span></a> <a href="https://mstdn.social/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a></p>
Brain Dynamics Toolbox<p>Saddles and stable nodes in a nonlinear <a href="https://mastodon.au/tags/DynamicalSystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicalSystem</span></a>. From example 6.3.1 in Steven Strogatz's textbook on <a href="https://mastodon.au/tags/NonlinearDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NonlinearDynamics</span></a> and <a href="https://mastodon.au/tags/Chaos" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Chaos</span></a>. Simulated with <a href="https://mastodon.au/tags/BrainDynamicsToolbox" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BrainDynamicsToolbox</span></a>.</p>
Brain Dynamics Toolbox<p>The damped and driven <a href="https://mastodon.au/tags/pendulum" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pendulum</span></a> is a classic <a href="https://mastodon.au/tags/nonlinear" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nonlinear</span></a> <a href="https://mastodon.au/tags/DynamicalSystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicalSystem</span></a> in physics. Simulated here with the <a href="https://mastodon.au/tags/BrainDynamicsToolbox" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BrainDynamicsToolbox</span></a>.</p>
Brain Dynamics Toolbox<p>The damped and driven <a href="https://mastodon.au/tags/pendulum" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pendulum</span></a> is a classic <a href="https://mastodon.au/tags/nonlinear" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nonlinear</span></a> <a href="https://mastodon.au/tags/DynamicalSystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicalSystem</span></a> in physics. Simulated here with the <a href="https://mastodon.au/tags/BrainDynamicsToolbox" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BrainDynamicsToolbox</span></a>.</p>
Brain Dynamics Toolbox<p>Saddles and stable nodes in a nonlinear <a href="https://mastodon.au/tags/DynamicalSystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicalSystem</span></a>. From example 6.3.1 in Steven Strogatz's textbook on <a href="https://mastodon.au/tags/NonlinearDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NonlinearDynamics</span></a> and <a href="https://mastodon.au/tags/Chaos" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Chaos</span></a>. Simulated with <a href="https://mastodon.au/tags/BrainDynamicsToolbox" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BrainDynamicsToolbox</span></a>.</p>
Brain Dynamics Toolbox<p>The <a href="https://mastodon.au/tags/Hopf" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hopf</span></a> bifurcation describes the birth of a <a href="https://mastodon.au/tags/LimitCycle" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LimitCycle</span></a> in a <a href="https://mastodon.au/tags/DynamicalSystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicalSystem</span></a>. Here is the normal form in euclidean coordinates, simulated with the <a href="https://mastodon.au/tags/BrainDynamicsToolbox" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BrainDynamicsToolbox</span></a>.</p>
Fabrizio Musacchio<p>An important step in <a href="https://sigmoid.social/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ComputationalNeuroscience</span></a> 🧠💻 was the development of the <a href="https://sigmoid.social/tags/HodgkinHuxley" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HodgkinHuxley</span></a> model, for which Hodgkin and Huxley received the <a href="https://sigmoid.social/tags/NobelPrize" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NobelPrize</span></a> in 1963. The model describes the dynamics of the <a href="https://sigmoid.social/tags/MembranePotential" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MembranePotential</span></a> of a <a href="https://sigmoid.social/tags/neuron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neuron</span></a> 🔬 by incorporating biophysiological properties. See here how it is derived, along with a simple implementation in <a href="https://sigmoid.social/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a>: </p><p>🌍 <a href="https://www.fabriziomusacchio.com/blog/2024-04-21-hodgkin_huxley_model/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">fabriziomusacchio.com/blog/202</span><span class="invisible">4-04-21-hodgkin_huxley_model/</span></a></p><p>Feel free to share and to experiment with the code.</p><p><a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CompNeuro</span></a> <a href="https://sigmoid.social/tags/PythonTutorial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PythonTutorial</span></a> <a href="https://sigmoid.social/tags/NeuralDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NeuralDynamics</span></a> <a href="https://sigmoid.social/tags/DynamicalSystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicalSystem</span></a></p>
Fabrizio Musacchio<p>Here is another <a href="https://sigmoid.social/tags/PhasePlaneAnalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PhasePlaneAnalysis</span></a> <a href="https://sigmoid.social/tags/tutorial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tutorial</span></a>, this time applied to the <a href="https://sigmoid.social/tags/VanDerPolOscillator" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>VanDerPolOscillator</span></a>, a non-conservative <a href="https://sigmoid.social/tags/oscillator" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>oscillator</span></a> with nonlinear damping:</p><p>🌍 <a href="https://www.fabriziomusacchio.com/blog/2024-03-24-van_der_pol_oscillator/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">fabriziomusacchio.com/blog/202</span><span class="invisible">4-03-24-van_der_pol_oscillator/</span></a></p><p><a href="https://sigmoid.social/tags/DynamicalSystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicalSystem</span></a> <a href="https://sigmoid.social/tags/ComputationalScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ComputationalScience</span></a> <a href="https://sigmoid.social/tags/PhasePortraits" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PhasePortraits</span></a> <a href="https://sigmoid.social/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a></p>
Brain Dynamics Toolbox<p><a href="https://mastodon.au/tags/PhasePlane" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PhasePlane</span></a> of a symmetrical <a href="https://mastodon.au/tags/DynamicalSystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicalSystem</span></a> with a <a href="https://mastodon.au/tags/homoclinic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>homoclinic</span></a> orbit. From example 6.6.2 of Steven Strogatz's textbook on <a href="https://mastodon.au/tags/NonlinearDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NonlinearDynamics</span></a> and Chaos. Simulated with the <a href="https://mastodon.au/tags/BrainDynamicsToolbox" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BrainDynamicsToolbox</span></a>.</p>
Fabrizio Musacchio<p>Exploring the behavior of <a href="https://sigmoid.social/tags/DynamicalSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicalSystems</span></a> directly through their differential equations can be complex. <a href="https://sigmoid.social/tags/PhasePlaneAnalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PhasePlaneAnalysis</span></a> offers a clearer and intuitive view by visualizing dynamics with <a href="https://sigmoid.social/tags/PhasePortraits" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PhasePortraits</span></a>, simplifying understanding. Here is a <a href="https://sigmoid.social/tags/tutorial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tutorial</span></a> along with some <a href="https://sigmoid.social/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a> code, exploring this method and exemplarily applying it to the simple pendulum.</p><p>🌍 <a href="https://www.fabriziomusacchio.com/blog/2024-03-17-phase_plane_analysis/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">fabriziomusacchio.com/blog/202</span><span class="invisible">4-03-17-phase_plane_analysis/</span></a></p><p><a href="https://sigmoid.social/tags/ChaoticSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ChaoticSystems</span></a> <a href="https://sigmoid.social/tags/DynamicalSystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicalSystem</span></a> <a href="https://sigmoid.social/tags/ComputationalScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ComputationalScience</span></a></p>
Brain Dynamics Toolbox<p>The <a href="https://mastodon.au/tags/stability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stability</span></a> of a <a href="https://mastodon.au/tags/FixedPoint" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FixedPoint</span></a> in a <a href="https://mastodon.au/tags/DynamicalSystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicalSystem</span></a> is determined by the <a href="https://mastodon.au/tags/Trace" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Trace</span></a> and <a href="https://mastodon.au/tags/Determinant" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Determinant</span></a> of its <a href="https://mastodon.au/tags/Jacobian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Jacobian</span></a> matrix. This is example 5.2.6 from Steven Strogatz's textbook on <a href="https://mastodon.au/tags/NonlinearDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NonlinearDynamics</span></a> and Chaos. Simulated with <a href="https://mastodon.au/tags/BrainDynamicsToolbox" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BrainDynamicsToolbox</span></a>.</p>
Non-Euclidean Dreamer<p>Genuary Prompt Nr. 5 is &quot;In the style of Vera Molnàr&quot;. When I looked at her works I liked the framing squares with things going on in them. They reminded me at what I saw when investigating Dynamical Systems. This is 8 iterations of the function f(x,y)=( x-(1+y/4)tan(y)-t*y , x )</p><p>Full-Res full-length full-size version: <a href="https://youtu.be/q8V0KPQRjRM" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/q8V0KPQRjRM</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/genuary" class="mention hashtag" rel="tag">#<span>genuary</span></a> <a href="https://mathstodon.xyz/tags/genuary5" class="mention hashtag" rel="tag">#<span>genuary5</span></a> <a href="https://mathstodon.xyz/tags/genuary2024" class="mention hashtag" rel="tag">#<span>genuary2024</span></a> <a href="https://mathstodon.xyz/tags/dynamicalsystem" class="mention hashtag" rel="tag">#<span>dynamicalsystem</span></a></p>
kandid<p>Mapping the complex plane.<br>Using an image of a flower for coloring.</p><p><a href="https://gitlab.com/metagrowing/ana/-/blob/master/visual_server/media/frag/cmplx/cmplx-03.frag" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">gitlab.com/metagrowing/ana/-/b</span><span class="invisible">lob/master/visual_server/media/frag/cmplx/cmplx-03.frag</span></a></p><p><a href="https://gitlab.com/metagrowing/ana/-/blob/master/live_coding/src/demo/cmplx/cmplx-03.clj" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">gitlab.com/metagrowing/ana/-/b</span><span class="invisible">lob/master/live_coding/src/demo/cmplx/cmplx-03.clj</span></a></p><p><a href="https://chaos.social/tags/dynamicalsystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dynamicalsystem</span></a> <a href="https://chaos.social/tags/openFrameworks" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>openFrameworks</span></a></p>
kandid<p><span class="h-card"><a href="https://mathstodon.xyz/@noneuclideandreamer" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>noneuclideandreamer</span></a></span> Again, this iterative mapping in the complex plane. This time with adjustable color spectrum and denoised.</p><p>for(int l=0; l&lt;9; ++l) {<br> _xy = vec2(_xy.y + sin(t * _xy.x),<br> _xy.x);<br>}</p><p><a href="https://chaos.social/tags/dynamicalsystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dynamicalsystem</span></a></p>
Non-Euclidean Dreamer<p>Soapy Function:</p><p>(x,y)=(y+tlog|x|,x)</p><p>(better resolution on youtube)</p><p><a href="https://mathstodon.xyz/tags/mastoart" class="mention hashtag" rel="tag">#<span>mastoart</span></a> <a href="https://mathstodon.xyz/tags/codeart" class="mention hashtag" rel="tag">#<span>codeart</span></a> <a href="https://mathstodon.xyz/tags/dynamicalsystem" class="mention hashtag" rel="tag">#<span>dynamicalsystem</span></a></p>
Non-Euclidean Dreamer<p>Proudly presenting this month&#39;s High-res Render for Patrons of Level Square and up: full size 25600×25600 pixels</p><p>If you try to &quot;magic eye&quot; it, it shimmers!</p><p>It&#39;s my favorite of the iteration functions I explored: (x,y)=(x-t*tan(y),x).<br />The squares have a side length of pi, due to tan of course.<br />Squares below each other would actually look the same since it does only depend on y%pi via tan. So I discretely jumped my t-value from 1.1 over 1 to 0.9.</p><p><a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="tag">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/codeart" class="mention hashtag" rel="tag">#<span>codeart</span></a> <a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="tag">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/blackandwhite" class="mention hashtag" rel="tag">#<span>blackandwhite</span></a> <a href="https://mathstodon.xyz/tags/dynamicalsystem" class="mention hashtag" rel="tag">#<span>dynamicalsystem</span></a> <a href="https://mathstodon.xyz/tags/mastoart" class="mention hashtag" rel="tag">#<span>mastoart</span></a></p>
Non-Euclidean Dreamer<p>This palette took me by surprise. 😅</p><p>Movie not compressable to masto size, so stills it is!</p><p><a href="https://mathstodon.xyz/tags/mastoart" class="mention hashtag" rel="tag">#<span>mastoart</span></a> <a href="https://mathstodon.xyz/tags/codeart" class="mention hashtag" rel="tag">#<span>codeart</span></a> <a href="https://mathstodon.xyz/tags/dynamicalsystem" class="mention hashtag" rel="tag">#<span>dynamicalsystem</span></a> <a href="https://mathstodon.xyz/tags/attractor" class="mention hashtag" rel="tag">#<span>attractor</span></a> <a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="tag">#<span>fractal</span></a> (mostly) <a href="https://mathstodon.xyz/tags/blackandwhite" class="mention hashtag" rel="tag">#<span>blackandwhite</span></a></p>
Non-Euclidean Dreamer<p>Bogdanov Map, I am so glad I found you!</p><p><a href="https://mathstodon.xyz/tags/mastoArt" class="mention hashtag" rel="tag">#<span>mastoArt</span></a> <a href="https://mathstodon.xyz/tags/codeArt" class="mention hashtag" rel="tag">#<span>codeArt</span></a> <a href="https://mathstodon.xyz/tags/dynamicalsystem" class="mention hashtag" rel="tag">#<span>dynamicalsystem</span></a> <a href="https://mathstodon.xyz/tags/attractor" class="mention hashtag" rel="tag">#<span>attractor</span></a> <a href="https://mathstodon.xyz/tags/bogdanov" class="mention hashtag" rel="tag">#<span>bogdanov</span></a></p>
ᛕᎥᕼᗷᗴᖇᑎᗴ丅Ꭵᑕᔕ<p><span class="h-card"><a href="https://qoto.org/@karlo" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>karlo</span></a></span></p><p>The <a href="https://qoto.org/tags/state" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>state</span></a> I’m talking about is the present state of every living <a href="https://qoto.org/tags/DynamicalSystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicalSystem</span></a> which is controlled by the closed <strong><em>autopoietic</em></strong> process of <a href="https://qoto.org/tags/growth" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>growth</span></a> and <a href="https://qoto.org/tags/learning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>learning</span></a>:</p>
ᛕᎥᕼᗷᗴᖇᑎᗴ丅Ꭵᑕᔕ<p><a href="https://qoto.org/tags/Meaning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Meaning</span></a> is usually described with <a href="https://qoto.org/tags/VectorSpace" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>VectorSpace</span></a> <a href="https://qoto.org/tags/Semantics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Semantics</span></a> as in the article below comparing the works from <a href="https://qoto.org/tags/CAShannon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CAShannon</span></a> and <a href="https://qoto.org/tags/AMTuring" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AMTuring</span></a>:</p><p><a href="https://www.journals.uchicago.edu/doi/full/10.1093/bjps/axx029" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">journals.uchicago.edu/doi/full</span><span class="invisible">/10.1093/bjps/axx029</span></a></p><p>Basically, what vector space semantics says is that the meaning of a message depends on the <a href="https://qoto.org/tags/Context" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Context</span></a> provided by the sender’s and the receiver’s <a href="https://qoto.org/tags/DynamicalSystem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DynamicalSystem</span></a> <a href="https://qoto.org/tags/Knowledge" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Knowledge</span></a> <a href="https://qoto.org/tags/State" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>State</span></a>.</p><p>As they are two different physical entities they will obviously be in different states, so the two meaning can never be <em>exactly</em> the same.</p>