Jon Awbrey<p><a href="https://mathstodon.xyz/tags/SignRelationalManifolds" class="mention hashtag" rel="tag">#<span>SignRelationalManifolds</span></a> • Discussion 1</p><p>• <a href="https://inquiryintoinquiry.com/2022/11/07/sign-relational-manifolds-discussion-1-2/" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2022/11</span><span class="invisible">/07/sign-relational-manifolds-discussion-1-2/</span></a></p><p>Torkild Thellefsen asks on <a href="https://mathstodon.xyz/tags/Facebook" class="mention hashtag" rel="tag">#<span>Facebook</span></a>, “What's at the End of a Chain of Interpretants?”</p><p>It is a <a href="https://mathstodon.xyz/tags/RecurringQuestion" class="mention hashtag" rel="tag">#<span>RecurringQuestion</span></a> — I answered as I often do.</p><p><a href="https://mathstodon.xyz/tags/SemioticManifolds" class="mention hashtag" rel="tag">#<span>SemioticManifolds</span></a>, like physical & mathematical manifolds, may be finite & bounded or infinite & unbounded but they may also be finite & unbounded, having no boundary in the topological sense. Thus <a href="https://mathstodon.xyz/tags/UnboundedSemiosis" class="mention hashtag" rel="tag">#<span>UnboundedSemiosis</span></a> does not imply <a href="https://mathstodon.xyz/tags/InfiniteSemiosis" class="mention hashtag" rel="tag">#<span>InfiniteSemiosis</span></a>.</p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="tag">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="tag">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/Manifolds" class="mention hashtag" rel="tag">#<span>Manifolds</span></a></p>