mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.8K
active users

#robustoptimization

0 posts0 participants0 posts today
Dr. Anna Latour<p>Excited to attend my first PhD defence at TU Delft: Daniël Vos will be defending his thesis &quot;Decision Tree Learning: Algorithms for Robust Prediction and Policy Optimization&quot;, containing work he did under supervision of Prof. Dr. Ir. R.L. Lagendijk and Dr. Ir. Sicco Verwer.</p><p><a href="https://mathstodon.xyz/tags/AcademicMastodon" class="mention hashtag" rel="tag">#<span>AcademicMastodon</span></a> <a href="https://mathstodon.xyz/tags/AcademicChatter" class="mention hashtag" rel="tag">#<span>AcademicChatter</span></a> <a href="https://mathstodon.xyz/tags/PhDLife" class="mention hashtag" rel="tag">#<span>PhDLife</span></a> <a href="https://mathstodon.xyz/tags/Delft" class="mention hashtag" rel="tag">#<span>Delft</span></a> <a href="https://mathstodon.xyz/tags/TUDelft" class="mention hashtag" rel="tag">#<span>TUDelft</span></a> <a href="https://mathstodon.xyz/tags/DelftUniversityOfTechnology" class="mention hashtag" rel="tag">#<span>DelftUniversityOfTechnology</span></a> <a href="https://mathstodon.xyz/tags/Dissertation" class="mention hashtag" rel="tag">#<span>Dissertation</span></a> <a href="https://mathstodon.xyz/tags/Defence" class="mention hashtag" rel="tag">#<span>Defence</span></a> <a href="https://mathstodon.xyz/tags/PhD" class="mention hashtag" rel="tag">#<span>PhD</span></a> <a href="https://mathstodon.xyz/tags/PhDDefence" class="mention hashtag" rel="tag">#<span>PhDDefence</span></a> <a href="https://mathstodon.xyz/tags/DecisionTrees" class="mention hashtag" rel="tag">#<span>DecisionTrees</span></a> <a href="https://mathstodon.xyz/tags/Optimization" class="mention hashtag" rel="tag">#<span>Optimization</span></a> <a href="https://mathstodon.xyz/tags/Optimisation" class="mention hashtag" rel="tag">#<span>Optimisation</span></a> <a href="https://mathstodon.xyz/tags/Algorithms" class="mention hashtag" rel="tag">#<span>Algorithms</span></a> <a href="https://mathstodon.xyz/tags/ExplainableAI" class="mention hashtag" rel="tag">#<span>ExplainableAI</span></a> <a href="https://mathstodon.xyz/tags/RobustOptimization" class="mention hashtag" rel="tag">#<span>RobustOptimization</span></a> <a href="https://mathstodon.xyz/tags/RobustAI" class="mention hashtag" rel="tag">#<span>RobustAI</span></a> <a href="https://mathstodon.xyz/tags/Defense" class="mention hashtag" rel="tag">#<span>Defense</span></a> <a href="https://mathstodon.xyz/tags/PhDDefense" class="mention hashtag" rel="tag">#<span>PhDDefense</span></a></p>
AIROYoung<p>Thanks again to @Francy_Maggioni for the rich talk about bounds for Multistage <a href="https://mathstodon.xyz/tags/StochasticOptimization" class="mention hashtag" rel="tag">#<span>StochasticOptimization</span></a> and Distributionally <a href="https://mathstodon.xyz/tags/RobustOptimization" class="mention hashtag" rel="tag">#<span>RobustOptimization</span></a>!<br />A lot of people from Italy, Brazil, and more attended the first webinar co-organized with @log_ufpb<br />Stay tuned for the next ones😉 <a href="https://t.co/lKa2LuVeJY" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">t.co/lKa2LuVeJY</span><span class="invisible"></span></a></p>
Jannis Kurtz<p>Our preprint &quot;Finding Regions of Counterfactual Explanations via Robust Optimization&quot; (written together with Donato Maragno, Tabea Röber, Rob Goedhart, Ilker Birbil and Dick den Hertog) is available online now.</p><p>Paper: <a href="https://lnkd.in/embHrTvM" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">lnkd.in/embHrTvM</span><span class="invisible"></span></a><br />Code &amp; Slides: <a href="https://lnkd.in/eV2vaM2D" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">lnkd.in/eV2vaM2D</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/robustoptimization" class="mention hashtag" rel="tag">#<span>robustoptimization</span></a> <a href="https://mathstodon.xyz/tags/machinelearning" class="mention hashtag" rel="tag">#<span>machinelearning</span></a> <a href="https://mathstodon.xyz/tags/counterfactualexplanations" class="mention hashtag" rel="tag">#<span>counterfactualexplanations</span></a> <a href="https://mathstodon.xyz/tags/explainableAI" class="mention hashtag" rel="tag">#<span>explainableAI</span></a></p>
Jannis Kurtz<p>We completely revised our paper &quot;Data-driven Prediction of Relevant Scenarios for Robust Combinatorial Optimization&quot; (written together with Marc Goerigk) and replaced the old method by a completely new data-driven algorithm which generalizes well to problem instances which are of larger dimension than the training instances.</p><p><a href="https://mathstodon.xyz/tags/robustoptimization" class="mention hashtag" rel="tag">#<span>robustoptimization</span></a> <a href="https://mathstodon.xyz/tags/machinelearning" class="mention hashtag" rel="tag">#<span>machinelearning</span></a> <a href="https://mathstodon.xyz/tags/scenarioprediction" class="mention hashtag" rel="tag">#<span>scenarioprediction</span></a></p><p><a href="https://arxiv.org/abs/2203.16642" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">arxiv.org/abs/2203.16642</span><span class="invisible"></span></a></p>
Jannis Kurtz<p>I&#39;m happy to share that our paper &quot;Data-driven robust optimization using deep neural networks&quot; (written together with Marc Goerigk) is published now in Computers &amp; OR.</p><p>We study <a href="https://mathstodon.xyz/tags/robustoptimization" class="mention hashtag" rel="tag">#<span>robustoptimization</span></a> problems where observations of the uncertain parameters are given by historical data. On this data we train one-class deep <a href="https://mathstodon.xyz/tags/neuralnetworks" class="mention hashtag" rel="tag">#<span>neuralnetworks</span></a> to detect outliers and extract the hidden data structures from the observations.<br /><a href="https://doi.org/10.1016/j.cor.2022.106087" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1016/j.cor.2022.106</span><span class="invisible">087</span></a></p>
Gabriele Dragotto<p>Highly recommended read! <a href="https://mas.to/tags/RobustOptimization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RobustOptimization</span></a> by Dimitris Bertsimas and Dick den Hertog</p>