mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.7K
active users

#pymc

0 posts0 participants0 posts today
PyMC developers<p>PyMC is in Google Summer of Code 2025!</p><p>We're excited to be part of <a href="https://bayes.club/tags/GSoC2025" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GSoC2025</span></a> under <span class="h-card" translate="no"><a href="https://mastodon.social/@NumFOCUS" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>NumFOCUS</span></a></span> If you're passionate about <a href="https://bayes.club/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> stats &amp; <a href="https://bayes.club/tags/OpenSource" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenSource</span></a>, this is your chance to contribute to <a href="https://bayes.club/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a>!</p><p>📅 Deadline: April 8, 18:00 UTC<br>🔗 Apply now: <a href="https://www.pymc.io/blog/blog_gsoc_2025_announcement.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">pymc.io/blog/blog_gsoc_2025_an</span><span class="invisible">nouncement.html</span></a></p>
EuroSciPy<p>Advancing probabilistic programming for scientific applications?</p><p><a href="https://fosstodon.org/tags/EuroSciPy2025" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EuroSciPy2025</span></a> welcomes original research on Bayesian methods, MCMC algorithms, and statistical modeling in <a href="https://fosstodon.org/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a>.</p><p>Submit your work as tutorials, talks, or posters!</p><p><a href="https://fosstodon.org/tags/BayesianStatistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BayesianStatistics</span></a> <a href="https://fosstodon.org/tags/ScientificPython" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ScientificPython</span></a> <a href="https://fosstodon.org/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a> <a href="https://fosstodon.org/tags/PyStan" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyStan</span></a> <a href="https://fosstodon.org/tags/EuroSciPy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EuroSciPy</span></a></p>
EuroSciPy<p>Developing Bayesian inference methods for complex scientific problems?</p><p><a href="https://fosstodon.org/tags/EuroSciPy2025" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EuroSciPy2025</span></a> is seeking original work on Hamiltonian Monte Carlo, variational inference, and statistical modeling in <a href="https://fosstodon.org/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a>.</p><p>Submit your innovations: <a href="https://pretalx.com/euroscipy-2025/cfp" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">pretalx.com/euroscipy-2025/cfp</span><span class="invisible"></span></a> <a href="https://fosstodon.org/tags/CfP" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CfP</span></a></p><p><a href="https://fosstodon.org/tags/BayesianStatistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BayesianStatistics</span></a> <a href="https://fosstodon.org/tags/ScientificPython" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ScientificPython</span></a> <a href="https://fosstodon.org/tags/BayesianInference" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BayesianInference</span></a> <a href="https://fosstodon.org/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a> <a href="https://fosstodon.org/tags/PyStan" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyStan</span></a> <a href="https://fosstodon.org/tags/EuroSciPy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EuroSciPy</span></a></p>
Pierre-Simon Laplace<p>📢 Episode 126 is Live! </p><p>🎧 Listen now 👉 <a href="https://learnbayesstats.com/episode/126-mmm-clv-bayesian-marketing-analytics-will-dean" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">learnbayesstats.com/episode/12</span><span class="invisible">6-mmm-clv-bayesian-marketing-analytics-will-dean</span></a></p><p>🎙️ In this episode with <br> Alex Andorra, Will Dean from <br>PyMC-Labs explains how Bayesian methods are reshaping marketing analytics, from MMM to CLV estimation and more ....</p><p><a href="https://mstdn.science/tags/BayesianMarketing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BayesianMarketing</span></a> <a href="https://mstdn.science/tags/MMM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MMM</span></a> <a href="https://mstdn.science/tags/CLV" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CLV</span></a> <a href="https://mstdn.science/tags/MarketingAnalytics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MarketingAnalytics</span></a> <a href="https://mstdn.science/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MachineLearning</span></a> <a href="https://mstdn.science/tags/ProbabilisticProgramming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ProbabilisticProgramming</span></a> <a href="https://mstdn.science/tags/DataScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataScience</span></a> <a href="https://mstdn.science/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a> <a href="https://mstdn.science/tags/Marketing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Marketing</span></a></p>
dillonniederhut<p>Are you a Python enthusiast looking to explore the power of probabilistic programming? Join us next week at PyHouston to hear Larry Jones introduce <a href="https://fosstodon.org/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a> — the go-to Python library for probabilistic modeling and Bayesian inference!</p><p><a href="https://www.meetup.com/python-14/events/305485300/?eventOrigin=group_upcoming_events" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">meetup.com/python-14/events/30</span><span class="invisible">5485300/?eventOrigin=group_upcoming_events</span></a></p>
Pierre-Simon Laplace<p>🔴 𝐇𝐨𝐰 𝐓𝐨 𝐅𝐨𝐜𝐮𝐬 𝐎𝐧 𝐖𝐡𝐚𝐭 𝐌𝐚𝐭𝐭𝐞𝐫𝐬 𝐈𝐧 𝐓𝐢𝐦𝐞 𝐒𝐞𝐫𝐢𝐞𝐬 𝐅𝐨𝐫𝐞𝐜𝐚𝐬𝐭𝐢𝐧𝐠<br>🔗 <a href="https://learnbayesstats.com/episode/124-state-space-models-structural-time-series-jesse-grabowski" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">learnbayesstats.com/episode/12</span><span class="invisible">4-state-space-models-structural-time-series-jesse-grabowski</span></a></p><p>✅ 𝐈𝐧 𝐭𝐡𝐢𝐬 𝐄𝐩𝐢𝐬𝐨𝐝𝐞, 𝐲𝐨𝐮’𝐥𝐥 𝐥𝐞𝐚𝐫𝐧 𝐡𝐨𝐰 𝐭𝐨 𝐚𝐜𝐡𝐢𝐞𝐯𝐞 𝐭𝐡𝐚𝐭 with <span class="h-card" translate="no"><a href="https://bayes.club/@pymc" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>pymc</span></a></span> </p><p>Alex Andorra &amp; Jesse Grabowski talk about state space models, simplifying forecasting, applications etc.</p><p><a href="https://mstdn.science/tags/LearningBayesianStatistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LearningBayesianStatistics</span></a> <a href="https://mstdn.science/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a> <a href="https://mstdn.science/tags/forecasting" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>forecasting</span></a> <a href="https://mstdn.science/tags/timeseries" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>timeseries</span></a></p>
➴➴➴Æ🜔Ɲ.Ƈꭚ⍴𝔥єɼ👩🏻‍💻<p>I genuinely miss PyMC2. The <a href="https://lgbtqia.space/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a> and <a href="https://lgbtqia.space/tags/Arviz" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Arviz</span></a> APIs changes so frequently, that it's impossible to know what the standard approach to anything is.</p><p><a href="https://lgbtqia.space/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> <a href="https://lgbtqia.space/tags/Statistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Statistics</span></a> in <a href="https://lgbtqia.space/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a> should be easy. </p><p>To be honest, I'd really like a well maintained <a href="https://lgbtqia.space/tags/SkLearn" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SkLearn</span></a> module for it.</p>
Kira Howe (McLean)<p>Learning about PyMC makes me want to become a statistician.. super interesting way to think about data, but so much goes into building a good model! So many rabbit holes.</p><p>Bayesian modelling is clearly super powerful though and seems to offer some answers to some of the most intractable problems with black-box ML. A reliable model with known and understandable inputs is invaluable for certain use cases.</p><p><a href="https://indieweb.social/tags/pydata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pydata</span></a> <a href="https://indieweb.social/tags/pydatalondon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pydatalondon</span></a> <a href="https://indieweb.social/tags/pymc" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pymc</span></a> <a href="https://indieweb.social/tags/bayesianstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesianstats</span></a></p>
Rami Krispin :unverified:<p>Cohort Revenue &amp; Retention Analysis with Python 🚀</p><p>For those who work with cohort data, I recommend checking Dr.Juan Orduz tutorial for cohort revenue and retention analysis with PyMC 👇🏼</p><p><a href="https://www.pymc-labs.com/blog-posts/cohort-revenue-retention/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">pymc-labs.com/blog-posts/cohor</span><span class="invisible">t-revenue-retention/</span></a></p><p><a href="https://mstdn.social/tags/python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>python</span></a> <a href="https://mstdn.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataScience</span></a> <a href="https://mstdn.social/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> <a href="https://mstdn.social/tags/pymc" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pymc</span></a></p>
Shih Ching Fu<p><span class="h-card" translate="no"><a href="https://bayes.club/@charleemos" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>charleemos</span></a></span> I have found both the <a href="https://bayes.club/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a> tutorials (<a href="https://www.pymc.io/projects/docs/en/latest/guides/Gaussian_Processes.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">pymc.io/projects/docs/en/lates</span><span class="invisible">t/guides/Gaussian_Processes.html</span></a>) and the <a href="https://bayes.club/tags/Stan" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Stan</span></a> User's Guide (<a href="https://mc-stan.org/docs/stan-users-guide/gaussian-processes.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mc-stan.org/docs/stan-users-gu</span><span class="invisible">ide/gaussian-processes.html</span></a>) on <a href="https://bayes.club/tags/GaussianProcesses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GaussianProcesses</span></a> good for getting your hands dirty. Seeing GPs in action and fiddling with hyperparameters was helpful for me to understand the mathematical underpinnings.</p>
Michael Misamore<p>It is possible to fit a graphical model with about 10k variables in <a href="https://sigmoid.social/tags/pymc" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pymc</span></a> or does it just explode? 🙂</p>
Jose<p>So testing some intuition on moving a deterministic analysis into a complex <a href="https://fediscience.org/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> inference problem using <a href="https://fediscience.org/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a> has been a really fast process. I'm very impressed with how easy it's been to use it. Well chuffed!!!</p>
Michael Osthege<p>Did you know that <span class="h-card" translate="no"><a href="https://bayes.club/@pymc" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>pymc</span></a></span> has a backend enabling live streaming of MCMCs to a <a href="https://nrw.social/tags/ClickHouse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ClickHouse</span></a> database?</p><p>Check out <a href="https://github.com/pymc-devs/mcbackend" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/pymc-devs/mcbackend</span><span class="invisible"></span></a> to learn more about <a href="https://nrw.social/tags/McBackend" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>McBackend</span></a>, and visit <a href="https://github.com/pymc-devs/pymc/wiki/GSoC-2024-projects#Extending-McBackend-related-features" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/pymc-devs/pymc/wiki</span><span class="invisible">/GSoC-2024-projects#Extending-McBackend-related-features</span></a> if you're interested in doing a Google Summer of Code project on this! <a href="https://nrw.social/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a> <a href="https://nrw.social/tags/GSoC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GSoC</span></a> <a href="https://nrw.social/tags/GSoC2024" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GSoC2024</span></a></p>
PyMC developers<p>🚀 Introducing "@as_model" in PyMC-Experimental API! </p><p>🔥 Key Features:<br>- Simplifies PyMC modeling<br>- Better code structure</p><p>🔗 Details: GitHub PR #268 <a href="https://github.com/pymc-devs/pymc-experimental/pull/268" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/pymc-devs/pymc-expe</span><span class="invisible">rimental/pull/268</span></a></p><p>🙌 Thanks to Theo Rashid, <span class="h-card" translate="no"><a href="https://bayes.club/@ricardoV94" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>ricardoV94</span></a></span>, Rob Zinkov, <span class="h-card" translate="no"><a href="https://bayes.club/@twiecki" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>twiecki</span></a></span> and Maxim Kochurov !</p><p><a href="https://bayes.club/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a> <a href="https://bayes.club/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a> <a href="https://bayes.club/tags/DataScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataScience</span></a> <a href="https://bayes.club/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> <a href="https://bayes.club/tags/OpenSource" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenSource</span></a> 🐍📈🎉</p>
Gabriel Weindel<p>Modern <a href="https://fediscience.org/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> samplers like <a href="https://fediscience.org/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a> are too fast... no way to take a break and having the impression to get things done in parallel... barely the time to toot.</p>
Rob Zinkov<p>At the encouragement of <span class="h-card" translate="no"><a href="https://chaos.social/@nkaretnikov" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>nkaretnikov</span></a></span> I made a blogpost on how to use <a href="https://bayes.club/tags/pymc" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pymc</span></a> in a more functional style!</p><p><a href="https://www.zinkov.com/posts/2023-alternative-frontends-pymc/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">zinkov.com/posts/2023-alternat</span><span class="invisible">ive-frontends-pymc/</span></a></p>
PyMC developers<p>🚀 Exciting update for <a href="https://bayes.club/tags/DataScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataScience</span></a> enthusiasts! Abuzar has pre-recorded a detailed walkthrough on Changepoint Modeling with <a href="https://bayes.club/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a>. 📊</p><p>🔗 Dive in before the live event for a head-start: <a href="https://www.youtube.com/watch?v=iwNju1o5yQo" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=iwNju1o5yQ</span><span class="invisible">o</span></a></p><p>📓 Grab the notebook: <a href="https://github.com/abuzarmahmood/pymcon_bayesian_changepoint/blob/72102ad6149b86d586595bf4523f40f66eb20c25/Bayesian_Changepoint_Zoo_neural_data.ipynb" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/abuzarmahmood/pymco</span><span class="invisible">n_bayesian_changepoint/blob/72102ad6149b86d586595bf4523f40f66eb20c25/Bayesian_Changepoint_Zoo_neural_data.ipynb</span></a></p><p>📅 Join us live for deeper insights and a Q&amp;A session! 👉 <a href="https://www.meetup.com/pymc-online-meetup/events/297203071" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">meetup.com/pymc-online-meetup/</span><span class="invisible">events/297203071</span></a></p><p><a href="https://bayes.club/tags/ChangepointModelling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ChangepointModelling</span></a> <a href="https://bayes.club/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a> <a href="https://bayes.club/tags/StatisticalModelling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>StatisticalModelling</span></a></p>
PyMC developers<p>🤔 How does our brain turn flavors into data? Uncover the science with Dr. Abuzar Mahmood at <a href="https://bayes.club/tags/PyMCon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMCon</span></a>.</p><p>🎥 Watch the interview: <a href="https://www.youtube.com/watch?v=ySF3X45XRyQ" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=ySF3X45XRy</span><span class="invisible">Q</span></a><br>🧠 Get into the nitty-gritty of brain signal analysis using <a href="https://bayes.club/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a>.<br>👉 Details &amp; chat: <a href="https://discourse.pymc.io/t/13251" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">discourse.pymc.io/t/13251</span><span class="invisible"></span></a></p><p><a href="https://bayes.club/tags/neuroscience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>neuroscience</span></a> <a href="https://bayes.club/tags/datascience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datascience</span></a> <a href="https://bayes.club/tags/statistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistics</span></a> <a href="https://bayes.club/tags/learning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>learning</span></a></p>
PyMC developers<p>📢 Calling all data science enthusiasts and PyMC users!</p><p>We're excited to announce the PyMC Docathon on November 17th at 3 PM CET (9 AM ET). This is your chance to contribute to the open-source community and help enhance the PyMC example gallery and documentation.</p><p>📆 Save the date: Nov 17, 3pm CET / 14 UTC / 6am PT / 9am ET<br>🔗 Sign up here: <a href="https://www.meetup.com/pymc-online-meetup/events/297172683/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">meetup.com/pymc-online-meetup/</span><span class="invisible">events/297172683/</span></a><br>👉 Join the PyMC Discord Server: <a href="https://discord.gg/g9vefGNEMH" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">discord.gg/g9vefGNEMH</span><span class="invisible"></span></a></p><p>🤝 Lets meet, collaborate, and network with fellow Bayesian enthusiasts. <a href="https://bayes.club/tags/pymc" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pymc</span></a></p>
Hector Muñoz<p>New post (and blog)! Predicting my dog's weight with Bayesian models.</p><p><a href="https://www.probablycredible.com/blog/bayesian-model-dog-weight/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">probablycredible.com/blog/baye</span><span class="invisible">sian-model-dog-weight/</span></a></p><p><a href="https://bayes.club/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> <a href="https://bayes.club/tags/pymc" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pymc</span></a></p>