mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.8K
active users

#PrimesFactorization

0 posts0 participants0 posts today
Jon Awbrey<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mc" class="u-url mention">@<span>mc</span></a></span> </p><p>The sequence of exponents (including the zeroes) in the <a href="https://mathstodon.xyz/tags/PrimesFactorization" class="mention hashtag" rel="tag">#<span>PrimesFactorization</span></a> itself forms a kind of <a href="https://mathstodon.xyz/tags/VectorLogarithm" class="mention hashtag" rel="tag">#<span>VectorLogarithm</span></a> (I think I used to call it) since the <a href="https://mathstodon.xyz/tags/PrimeMask" class="mention hashtag" rel="tag">#<span>PrimeMask</span></a> (?) or <a href="https://mathstodon.xyz/tags/PrimeWise" class="mention hashtag" rel="tag">#<span>PrimeWise</span></a> sum of the logs is the log of the product.</p>
Jon Awbrey<p>Just experimenting a little —<br />will add more explanation later —</p><p><a href="https://mathstodon.xyz/tags/RiffsAndRotes" class="mention hashtag" rel="tag">#<span>RiffsAndRotes</span></a><br />• <a href="https://oeis.org/wiki/Riffs_and_Rotes" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">oeis.org/wiki/Riffs_and_Rotes</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/Riffs" class="mention hashtag" rel="tag">#<span>Riffs</span></a> from 1 to 60<br />• <a href="https://oeis.org/w/images/1/17/Animation_Riff_60_x_0.16.gif" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">oeis.org/w/images/1/17/Animati</span><span class="invisible">on_Riff_60_x_0.16.gif</span></a></p><p><a href="https://mathstodon.xyz/tags/Rotes" class="mention hashtag" rel="tag">#<span>Rotes</span></a> from 1 to 60<br />• <a href="https://oeis.org/w/images/e/ee/Animation_Rote_60_x_0.16.gif" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">oeis.org/w/images/e/ee/Animati</span><span class="invisible">on_Rote_60_x_0.16.gif</span></a></p><p><a href="https://mathstodon.xyz/tags/Arithmetization" class="mention hashtag" rel="tag">#<span>Arithmetization</span></a> <a href="https://mathstodon.xyz/tags/G%C3%B6delNumbering" class="mention hashtag" rel="tag">#<span>GödelNumbering</span></a><br /><a href="https://mathstodon.xyz/tags/DoublyRecursiveFactorization" class="mention hashtag" rel="tag">#<span>DoublyRecursiveFactorization</span></a> <a href="https://mathstodon.xyz/tags/DRF" class="mention hashtag" rel="tag">#<span>DRF</span></a><br /><a href="https://mathstodon.xyz/tags/Arithmetic" class="mention hashtag" rel="tag">#<span>Arithmetic</span></a> <a href="https://mathstodon.xyz/tags/GraphTheory" class="mention hashtag" rel="tag">#<span>GraphTheory</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="tag">#<span>NumberTheory</span></a><br /><a href="https://mathstodon.xyz/tags/Primes" class="mention hashtag" rel="tag">#<span>Primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="tag">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/PrimesFactorization" class="mention hashtag" rel="tag">#<span>PrimesFactorization</span></a></p>
Jon Awbrey<p><a href="https://mathstodon.xyz/tags/RiffsAndRotes" class="mention hashtag" rel="tag">#<span>RiffsAndRotes</span></a> <br />• <a href="https://oeis.org/wiki/Riffs_and_Rotes" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">oeis.org/wiki/Riffs_and_Rotes</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/Arithmetization" class="mention hashtag" rel="tag">#<span>Arithmetization</span></a> <a href="https://mathstodon.xyz/tags/G%C3%B6delNumbering" class="mention hashtag" rel="tag">#<span>GödelNumbering</span></a><br /><a href="https://mathstodon.xyz/tags/DoublyRecursiveFactorization" class="mention hashtag" rel="tag">#<span>DoublyRecursiveFactorization</span></a> <a href="https://mathstodon.xyz/tags/DRF" class="mention hashtag" rel="tag">#<span>DRF</span></a><br /><a href="https://mathstodon.xyz/tags/Arithmetic" class="mention hashtag" rel="tag">#<span>Arithmetic</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="tag">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/GraphTheory" class="mention hashtag" rel="tag">#<span>GraphTheory</span></a><br /><a href="https://mathstodon.xyz/tags/PrimesFactorization" class="mention hashtag" rel="tag">#<span>PrimesFactorization</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="tag">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/Primes" class="mention hashtag" rel="tag">#<span>Primes</span></a></p>