Mohammad Hajiaghayi<p>In our effort to put courses online, we continue lectures on Algorithmic Lower Bound Course. Now you can watch</p><p>Lesson 4-11: Algorithmic Lower Bounds by Mohammad Hajiaghayi - NP-Completeness and Beyond</p><p>(FEEL FREE TO SUBSCRIBE TO YOUTUBE @hajiaghayi FOR FUTURE LESSONS Premiering on WEDNESDAYS)</p><p><a href="https://youtu.be/VZyffnAb1r0" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/VZyffnAb1r0</span><span class="invisible"></span></a> (Lesson 4: 3-Partition Problem & Proving NP-Hardness)</p><p><a href="https://youtu.be/4fCD9_1eQw0" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/4fCD9_1eQw0</span><span class="invisible"></span></a> (Lesson 5: Puzzle Problem NP-Hardness & 3-Partition)</p><p><a href="https://youtu.be/FIyEj72-UJQ" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/FIyEj72-UJQ</span><span class="invisible"></span></a> (Lesson 6: 3-SAT Problem & Proving NP-Hardness)</p><p><a href="https://youtu.be/tbSJzaKx2pA" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/tbSJzaKx2pA</span><span class="invisible"></span></a> (Lesson 7: Puzzle Problem NP-Hardness via 3-SAT)</p><p><a href="https://youtu.be/voRVebBsh94" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/voRVebBsh94</span><span class="invisible"></span></a> (Lesson 8: Fine-grained Subcubic Complexity: Part 1)</p><p><a href="https://youtu.be/gRURSM6QARo" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/gRURSM6QARo</span><span class="invisible"></span></a> (Lesson 9: Fine-grained Subcubic Complexity: Part 2)</p><p><a href="https://youtu.be/qPw82bTAXkc" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/qPw82bTAXkc</span><span class="invisible"></span></a> (Lesson 10: Fine-grained Subquadratic Complexity 1)</p><p><a href="https://youtu.be/C6j4avVkI7U" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/C6j4avVkI7U</span><span class="invisible"></span></a> (Lesson 11: Fine-grained Subquadratic Complexity 2)</p><p><a href="https://mathstodon.xyz/tags/AlorithmicComplexity" class="mention hashtag" rel="tag">#<span>AlorithmicComplexity</span></a>, </p><p><a href="https://mathstodon.xyz/tags/3SAT" class="mention hashtag" rel="tag">#<span>3SAT</span></a>,</p><p><a href="https://mathstodon.xyz/tags/3Partition" class="mention hashtag" rel="tag">#<span>3Partition</span></a>,</p><p><a href="https://mathstodon.xyz/tags/subquadratic" class="mention hashtag" rel="tag">#<span>subquadratic</span></a>,</p><p><a href="https://mathstodon.xyz/tags/subcubic" class="mention hashtag" rel="tag">#<span>subcubic</span></a>,</p><p><a href="https://mathstodon.xyz/tags/Finegrained" class="mention hashtag" rel="tag">#<span>Finegrained</span></a>,</p><p><a href="https://mathstodon.xyz/tags/HardnessExploration" class="mention hashtag" rel="tag">#<span>HardnessExploration</span></a>, </p><p><a href="https://mathstodon.xyz/tags/NP" class="mention hashtag" rel="tag">#<span>NP</span></a>, </p><p><a href="https://mathstodon.xyz/tags/PSPACE" class="mention hashtag" rel="tag">#<span>PSPACE</span></a>, </p><p><a href="https://mathstodon.xyz/tags/NPComplete" class="mention hashtag" rel="tag">#<span>NPComplete</span></a>, </p><p><a href="https://mathstodon.xyz/tags/LogSpace" class="mention hashtag" rel="tag">#<span>LogSpace</span></a>, </p><p><a href="https://mathstodon.xyz/tags/ExponentialComplexity" class="mention hashtag" rel="tag">#<span>ExponentialComplexity</span></a>, </p><p><a href="https://mathstodon.xyz/tags/ParallelComputation" class="mention hashtag" rel="tag">#<span>ParallelComputation</span></a>, </p><p><a href="https://mathstodon.xyz/tags/PvsNP" class="mention hashtag" rel="tag">#<span>PvsNP</span></a>, </p><p><a href="https://mathstodon.xyz/tags/NPSPACE" class="mention hashtag" rel="tag">#<span>NPSPACE</span></a>, </p><p><a href="https://mathstodon.xyz/tags/NonDeterministicSpace" class="mention hashtag" rel="tag">#<span>NonDeterministicSpace</span></a>, hashtag</p><p><a href="https://mathstodon.xyz/tags/SavitchTheorem" class="mention hashtag" rel="tag">#<span>SavitchTheorem</span></a>, </p><p><a href="https://mathstodon.xyz/tags/ComplexityClasses" class="mention hashtag" rel="tag">#<span>ComplexityClasses</span></a>, </p><p><a href="https://mathstodon.xyz/tags/Reductions" class="mention hashtag" rel="tag">#<span>Reductions</span></a>, </p><p><a href="https://mathstodon.xyz/tags/ImportantProblems" class="mention hashtag" rel="tag">#<span>ImportantProblems</span></a>, </p><p><a href="https://mathstodon.xyz/tags/CommunicationComplexity" class="mention hashtag" rel="tag">#<span>CommunicationComplexity</span></a>, hashtag</p><p><a href="https://mathstodon.xyz/tags/GeometricProblems" class="mention hashtag" rel="tag">#<span>GeometricProblems</span></a>, </p><p><a href="https://mathstodon.xyz/tags/AlgorithmDesign" class="mention hashtag" rel="tag">#<span>AlgorithmDesign</span></a>, </p><p><a href="https://mathstodon.xyz/tags/ComputationalComplexity" class="mention hashtag" rel="tag">#<span>ComputationalComplexity</span></a>, </p><p><a href="https://mathstodon.xyz/tags/TheoreticalComputerScience" class="mention hashtag" rel="tag">#<span>TheoreticalComputerScience</span></a>, </p><p><a href="https://mathstodon.xyz/tags/AlgorithmicLowerBounds" class="mention hashtag" rel="tag">#<span>AlgorithmicLowerBounds</span></a></p><p>For comprehensive handwritten lecture notes on this course, visit the instructor's website:</p><p><a href="http://www.cs.umd.edu/~hajiagha/" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://www.</span><span class="">cs.umd.edu/~hajiagha/</span><span class="invisible"></span></a><br />The course textbook "Computational Intractability: A Guide to Algorithmic Lower Bounds" by Demaine, Gasarch, and Hajiaghayi is available for free at:</p><p><a href="https://hardness.mit.edu/" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">hardness.mit.edu/</span><span class="invisible"></span></a></p>