mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.8K
active users

#NPComplete

0 posts0 participants0 posts today
Mohammad Hajiaghayi<p>🚀 Excited to announce my 5th course, Network Algorithms and Approximations! 🎓 Explore NP-complete problems (Set Cover, Unique Coverage, etc.), approximation techniques, and applications in data science, neural nets, &amp; network optimization.</p><p>📺 First lecture: <a href="https://youtu.be/Tnm-8xieqB4" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/Tnm-8xieqB4</span><span class="invisible"></span></a><br />🎥 Weekly uploads: Wednesdays at 7 PM EDT. Playlist: <a href="https://youtube.com/playlist?list=PLx7SjCaKZzEIeJxOlTuXveAE5eY7WOYB9" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">youtube.com/playlist?list=PLx7</span><span class="invisible">SjCaKZzEIeJxOlTuXveAE5eY7WOYB9</span></a></p><p>Plus, all 4 previous courses (Game Theory, Algorithms, Lower Bounds, Data Science) are online! 🌐 <a href="https://youtube.com/@hajiaghayi" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtube.com/@hajiaghayi</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/NetworkDesign" class="mention hashtag" rel="tag">#<span>NetworkDesign</span></a> <a href="https://mathstodon.xyz/tags/Optimization" class="mention hashtag" rel="tag">#<span>Optimization</span></a> <a href="https://mathstodon.xyz/tags/NPComplete" class="mention hashtag" rel="tag">#<span>NPComplete</span></a> <a href="https://mathstodon.xyz/tags/Algorithms" class="mention hashtag" rel="tag">#<span>Algorithms</span></a> <a href="https://mathstodon.xyz/tags/DataScience" class="mention hashtag" rel="tag">#<span>DataScience</span></a> <a href="https://mathstodon.xyz/tags/NeuralNets" class="mention hashtag" rel="tag">#<span>NeuralNets</span></a></p>
Mohammad Hajiaghayi<p>In our effort to put courses online, we continue lectures on Algorithmic Lower Bound Course. Now you can watch</p><p>Lesson 4-11: Algorithmic Lower Bounds by Mohammad Hajiaghayi - NP-Completeness and Beyond</p><p>(FEEL FREE TO SUBSCRIBE TO YOUTUBE @hajiaghayi FOR FUTURE LESSONS Premiering on WEDNESDAYS)</p><p><a href="https://youtu.be/VZyffnAb1r0" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/VZyffnAb1r0</span><span class="invisible"></span></a> (Lesson 4: 3-Partition Problem &amp; Proving NP-Hardness)</p><p><a href="https://youtu.be/4fCD9_1eQw0" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/4fCD9_1eQw0</span><span class="invisible"></span></a> (Lesson 5: Puzzle Problem NP-Hardness &amp; 3-Partition)</p><p><a href="https://youtu.be/FIyEj72-UJQ" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/FIyEj72-UJQ</span><span class="invisible"></span></a> (Lesson 6: 3-SAT Problem &amp; Proving NP-Hardness)</p><p><a href="https://youtu.be/tbSJzaKx2pA" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/tbSJzaKx2pA</span><span class="invisible"></span></a> (Lesson 7: Puzzle Problem NP-Hardness via 3-SAT)</p><p><a href="https://youtu.be/voRVebBsh94" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/voRVebBsh94</span><span class="invisible"></span></a> (Lesson 8: Fine-grained Subcubic Complexity: Part 1)</p><p><a href="https://youtu.be/gRURSM6QARo" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/gRURSM6QARo</span><span class="invisible"></span></a> (Lesson 9: Fine-grained Subcubic Complexity: Part 2)</p><p><a href="https://youtu.be/qPw82bTAXkc" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/qPw82bTAXkc</span><span class="invisible"></span></a> (Lesson 10: Fine-grained Subquadratic Complexity 1)</p><p><a href="https://youtu.be/C6j4avVkI7U" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">youtu.be/C6j4avVkI7U</span><span class="invisible"></span></a> (Lesson 11: Fine-grained Subquadratic Complexity 2)</p><p><a href="https://mathstodon.xyz/tags/AlorithmicComplexity" class="mention hashtag" rel="tag">#<span>AlorithmicComplexity</span></a>, </p><p><a href="https://mathstodon.xyz/tags/3SAT" class="mention hashtag" rel="tag">#<span>3SAT</span></a>,</p><p><a href="https://mathstodon.xyz/tags/3Partition" class="mention hashtag" rel="tag">#<span>3Partition</span></a>,</p><p><a href="https://mathstodon.xyz/tags/subquadratic" class="mention hashtag" rel="tag">#<span>subquadratic</span></a>,</p><p><a href="https://mathstodon.xyz/tags/subcubic" class="mention hashtag" rel="tag">#<span>subcubic</span></a>,</p><p><a href="https://mathstodon.xyz/tags/Finegrained" class="mention hashtag" rel="tag">#<span>Finegrained</span></a>,</p><p><a href="https://mathstodon.xyz/tags/HardnessExploration" class="mention hashtag" rel="tag">#<span>HardnessExploration</span></a>, </p><p><a href="https://mathstodon.xyz/tags/NP" class="mention hashtag" rel="tag">#<span>NP</span></a>, </p><p><a href="https://mathstodon.xyz/tags/PSPACE" class="mention hashtag" rel="tag">#<span>PSPACE</span></a>, </p><p><a href="https://mathstodon.xyz/tags/NPComplete" class="mention hashtag" rel="tag">#<span>NPComplete</span></a>, </p><p><a href="https://mathstodon.xyz/tags/LogSpace" class="mention hashtag" rel="tag">#<span>LogSpace</span></a>, </p><p><a href="https://mathstodon.xyz/tags/ExponentialComplexity" class="mention hashtag" rel="tag">#<span>ExponentialComplexity</span></a>, </p><p><a href="https://mathstodon.xyz/tags/ParallelComputation" class="mention hashtag" rel="tag">#<span>ParallelComputation</span></a>, </p><p><a href="https://mathstodon.xyz/tags/PvsNP" class="mention hashtag" rel="tag">#<span>PvsNP</span></a>, </p><p><a href="https://mathstodon.xyz/tags/NPSPACE" class="mention hashtag" rel="tag">#<span>NPSPACE</span></a>, </p><p><a href="https://mathstodon.xyz/tags/NonDeterministicSpace" class="mention hashtag" rel="tag">#<span>NonDeterministicSpace</span></a>, hashtag</p><p><a href="https://mathstodon.xyz/tags/SavitchTheorem" class="mention hashtag" rel="tag">#<span>SavitchTheorem</span></a>, </p><p><a href="https://mathstodon.xyz/tags/ComplexityClasses" class="mention hashtag" rel="tag">#<span>ComplexityClasses</span></a>, </p><p><a href="https://mathstodon.xyz/tags/Reductions" class="mention hashtag" rel="tag">#<span>Reductions</span></a>, </p><p><a href="https://mathstodon.xyz/tags/ImportantProblems" class="mention hashtag" rel="tag">#<span>ImportantProblems</span></a>, </p><p><a href="https://mathstodon.xyz/tags/CommunicationComplexity" class="mention hashtag" rel="tag">#<span>CommunicationComplexity</span></a>, hashtag</p><p><a href="https://mathstodon.xyz/tags/GeometricProblems" class="mention hashtag" rel="tag">#<span>GeometricProblems</span></a>, </p><p><a href="https://mathstodon.xyz/tags/AlgorithmDesign" class="mention hashtag" rel="tag">#<span>AlgorithmDesign</span></a>, </p><p><a href="https://mathstodon.xyz/tags/ComputationalComplexity" class="mention hashtag" rel="tag">#<span>ComputationalComplexity</span></a>, </p><p><a href="https://mathstodon.xyz/tags/TheoreticalComputerScience" class="mention hashtag" rel="tag">#<span>TheoreticalComputerScience</span></a>, </p><p><a href="https://mathstodon.xyz/tags/AlgorithmicLowerBounds" class="mention hashtag" rel="tag">#<span>AlgorithmicLowerBounds</span></a></p><p>For comprehensive handwritten lecture notes on this course, visit the instructor&#39;s website:</p><p><a href="http://www.cs.umd.edu/~hajiagha/" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">http://www.</span><span class="">cs.umd.edu/~hajiagha/</span><span class="invisible"></span></a><br />The course textbook &quot;Computational Intractability: A Guide to Algorithmic Lower Bounds&quot; by Demaine, Gasarch, and Hajiaghayi is available for free at:</p><p><a href="https://hardness.mit.edu/" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">hardness.mit.edu/</span><span class="invisible"></span></a></p>
Victor Porton<p>My P=NP proof - check for errors<br /><a href="https://drive.google.com/file/d/16Ws_eZF8f-rn1mFvkIT-UdMdvTwOu4vO/view?usp=drive_link" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">drive.google.com/file/d/16Ws_e</span><span class="invisible">ZF8f-rn1mFvkIT-UdMdvTwOu4vO/view?usp=drive_link</span></a><br />It uses inversions of bijections, algorithms as arguments to other algorithms, reducing SAT to another NP problem, incompleteness of ZFC.<br />If you find it hard to read, give me advice how to make it more clear.<br />And no, I don&#39;t provide a practically efficient NP-complete algorithm. <a href="https://mathstodon.xyz/tags/pnp" class="mention hashtag" rel="tag">#<span>pnp</span></a> <a href="https://mathstodon.xyz/tags/NPComplete" class="mention hashtag" rel="tag">#<span>NPComplete</span></a></p>
mhe<p>Is this NP-complete?</p><p><a href="https://mathstodon.xyz/tags/NPComplete" class="mention hashtag" rel="tag">#<span>NPComplete</span></a> <a href="https://mathstodon.xyz/tags/texel" class="mention hashtag" rel="tag">#<span>texel</span></a> <a href="https://mathstodon.xyz/tags/netherlands" class="mention hashtag" rel="tag">#<span>netherlands</span></a></p>
Bornach<p><a href="https://masto.ai/tags/BingChat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BingChat</span></a> (precise) has concluded that P=NP</p><p>I asked it to write a Python script that when given a graph where there are no more than 5 edges for every vertex, it returns the length of the longest path that visits each vertex no more than once. Then lifted the edge count restriction.</p><p>In both cases it claimed polynomial time complexity to solve an NP-hard problem</p><p><a href="https://masto.ai/tags/ComputerScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ComputerScience</span></a> <a href="https://masto.ai/tags/complexity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>complexity</span></a> <a href="https://masto.ai/tags/PequalsNP" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PequalsNP</span></a> <a href="https://masto.ai/tags/NPhard" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NPhard</span></a> <a href="https://masto.ai/tags/NPcomplete" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NPcomplete</span></a> <a href="https://masto.ai/tags/python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>python</span></a> <a href="https://masto.ai/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a></p>
Bornach<p>[Up and Atom] on the unsolved problem of whether NP-Complete problems can be decided in polynomial time<br><a href="https://youtu.be/ctwX--JEzSA" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/ctwX--JEzSA</span><span class="invisible"></span></a><br><a href="https://masto.ai/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://masto.ai/tags/ComputerScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ComputerScience</span></a> <a href="https://masto.ai/tags/computability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>computability</span></a> <a href="https://masto.ai/tags/ComplexityTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ComplexityTheory</span></a> <a href="https://masto.ai/tags/NPComplete" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NPComplete</span></a></p>
Lup Yuen Lee 李立源<p><a href="https://qoto.org/tags/Kingdomino" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Kingdomino</span></a> is <a href="https://qoto.org/tags/NPComplete" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NPComplete</span></a>...</p><p><a href="https://arxiv.org/abs/1909.02849" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/1909.02849</span><span class="invisible"></span></a></p>