mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.7K
active users

#MathInduction

0 posts0 participants0 posts today
Joana de Castro Arnaud<p><a href="https://mathstodon.xyz/tags/Tusky" class="mention hashtag" rel="tag">#<span>Tusky</span></a>, my <a href="https://mathstodon.xyz/tags/Mastodon" class="mention hashtag" rel="tag">#<span>Mastodon</span></a> <a href="https://mathstodon.xyz/tags/Client" class="mention hashtag" rel="tag">#<span>Client</span></a>, has no easy way to show what Hashtags I&#39;m <a href="https://mathstodon.xyz/tags/Following" class="mention hashtag" rel="tag">#<span>Following</span></a>; I maintain a text file with them, but I got a better idea: posting them!</p><p>I&#39;m <a href="https://mathstodon.xyz/tags/NowFollowing" class="mention hashtag" rel="tag">#<span>NowFollowing</span></a>: </p><p><a href="https://mathstodon.xyz/tags/MathInduction" class="mention hashtag" rel="tag">#<span>MathInduction</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="tag">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/BeTheAlgorithm" class="mention hashtag" rel="tag">#<span>BeTheAlgorithm</span></a> <a href="https://mathstodon.xyz/tags/ToolsForMathematicalThought" class="mention hashtag" rel="tag">#<span>ToolsForMathematicalThought</span></a></p><p>Post your hashtags, plus <a href="https://mathstodon.xyz/tags/NowFollowing" class="mention hashtag" rel="tag">#<span>NowFollowing</span></a>, to share with us all.</p>
The King<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mudri" class="u-url mention">@<span>mudri</span></a></span><br />Sort of. ZFC + &quot;There is an inaccessible cardinal&quot; implies you have a set that satisfies ZFC and is well founded.</p><p>It&#39;s more general and subtle than just that though. A measurable cardinal gives you a nontrivial elementary embedding of V into a well founded class, for example.</p><p><a href="https://mathstodon.xyz/tags/MathInduction" class="mention hashtag" rel="tag">#<span>MathInduction</span></a></p>
The King<p>(7/7) Oh yeah, and optionally, you can help me with an experiment.</p><p>To help resolve the problem <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@MartinEscardo" class="u-url mention">@<span>MartinEscardo</span></a></span> pointed out at <a href="https://mathstodon.xyz/@MartinEscardo/109552785927789702" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">mathstodon.xyz/@MartinEscardo/</span><span class="invisible">109552785927789702</span></a>, I suggest the following:</p><p>- To follow this thread, follow the <a href="https://mathstodon.xyz/tags/MathInduction" class="mention hashtag" rel="tag">#<span>MathInduction</span></a> tag (<a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="tag">#<span>Induction</span></a> is a cooking tag)<br />- When posting in this thread, if you&#39;re trying out the experiment, add <a href="https://mathstodon.xyz/tags/MathInduction" class="mention hashtag" rel="tag">#<span>MathInduction</span></a> to your post and make sure the visibility is public (not unlisted). You could include other tags that are relevant to your post too.</p><p><a href="https://mathstodon.xyz/tags/BeTheAlgorithm" class="mention hashtag" rel="tag">#<span>BeTheAlgorithm</span></a></p>
The King<p>(6/7) This is why the Burali-Forti paradox pops up in many different approaches to foundations (including type theory); if you can do induction over your own induction, you can often prove yourself consistent.</p><p><a href="https://mathstodon.xyz/tags/MathInduction" class="mention hashtag" rel="tag">#<span>MathInduction</span></a></p>
The King<p>(5/7) Let&#39;s say you want to follow the simpler &quot;PA is consistent because it is sound&quot; route. Simply implementing the natural numbers isn&#39;t enough; you need to be able to define an inductive type for arithmetical sets as well! <a href="https://en.wikipedia.org/wiki/Arithmetical_set" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Arithmet</span><span class="invisible">ical_set</span></a> In general for other arithmetics, you&#39;ll need to be able to do induction over the sets of things it inducts over. (For example, in full second order arithmetic you&#39;d need induction over second order arithmetical sets of numbers.)</p><p><a href="https://mathstodon.xyz/tags/MathInduction" class="mention hashtag" rel="tag">#<span>MathInduction</span></a></p>
The King<p>(4/7) As an example, consider the consistency of PA. This can be proven with epsilon_0 induction. But we don&#39;t need to think about Von Neumann ordinals. In type theory, being able to create an inductive type for the Cantor normal form (a tree like notation for ordinals below epsilon_0) is sufficient to prove PA consistent. <a href="https://en.wikipedia.org/wiki/Cantor_normal_form" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Cantor_n</span><span class="invisible">ormal_form</span></a></p><p><a href="https://mathstodon.xyz/tags/MathInduction" class="mention hashtag" rel="tag">#<span>MathInduction</span></a></p>
The King<p>(3/7)<br />- Large cardinal axioms in <a href="https://mathstodon.xyz/tags/SetTheory" class="mention hashtag" rel="tag">#<span>SetTheory</span></a> are often equivalent to asserting that there exists *well-founded* models with various properties, which gives you access to more induction.<br />- In Predicative Arithmetic by Edward Nelson (<a href="https://web.math.princeton.edu/~nelson/books.html" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">web.math.princeton.edu/~nelson</span><span class="invisible">/books.html</span></a>) it&#39;s shown that by severely weakening induction and then considering what numbers still satisfy inductive properties, you can get a system that might be acceptable in <a href="https://mathstodon.xyz/tags/ultrafinitism" class="mention hashtag" rel="tag">#<span>ultrafinitism</span></a>.</p><p><a href="https://mathstodon.xyz/tags/MathInduction" class="mention hashtag" rel="tag">#<span>MathInduction</span></a></p>
The King<p>(2/7) Note that this induction is not just about Von Neumann ordinals. It takes different shapes in different foundations:</p><p>- In <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="tag">#<span>arithmetic</span></a> it is just natural number induction (although there are different forms of even this induction)<br />- In <a href="https://mathstodon.xyz/tags/TypeTheory" class="mention hashtag" rel="tag">#<span>TypeTheory</span></a>, induction is provided by inductive types. The stronger the type formers, the more induction you get.</p><p><a href="https://mathstodon.xyz/tags/MathInduction" class="mention hashtag" rel="tag">#<span>MathInduction</span></a></p>
The King<p>(1/7) Mathematical induction is in some sense the most powerful mathematical technique.</p><p>I don&#39;t simply mean that it&#39;s really useful; I mean that meta-mathematically it often underpins the strength of a foundation. This is the main insight from ordinal analysis.</p><p>In addition, many famous theorems from &quot;everyday&quot; mathematics are logically equivalent to induction principles of various strengths. This is the main insight of reverse mathematics.</p><p><a href="https://mathstodon.xyz/tags/MathInduction" class="mention hashtag" rel="tag">#<span>MathInduction</span></a> <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="tag">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="tag">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/ReverseMathematics" class="mention hashtag" rel="tag">#<span>ReverseMathematics</span></a></p>