Enabla<p>We are pleased to announce a second lecture from Dr. Marcello Dalmonte (ICTP) on the intricacies of statistical mechanics and phase transitions in the context of data mining the many-body problem. In this part, Marcello discusses essential concepts of the partition function, emphasizing efficient sampling strategies via Markov chains and Monte Carlo simulations. He specifically addresses the challenge of critical slowing down near phase transitions and introduces cluster algorithms as a powerful tool for effective sampling at criticality. Using the illustrative example of a three-site Ising model, Dr. Dalmonte demonstrates how temperature impacts the intrinsic dimensionality of feature spaces, providing valuable insights into many-body systems.</p><p>🎥 Don't miss this <a href="https://mathstodon.xyz/tags/OpenAccess" class="mention hashtag" rel="tag">#<span>OpenAccess</span></a> opportunity to watch the lecture for free and engage in discussions with the Enabla community, including Marcello himself: <a href="https://enabla.com/pub/325/about" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">enabla.com/pub/325/about</span><span class="invisible"></span></a></p><p>The first lecture of the same series was announced earlier: <a href="https://mathstodon.xyz/@enabla/113163357376577315" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">mathstodon.xyz/@enabla/1131633</span><span class="invisible">57376577315</span></a></p><p><a href="https://mathstodon.xyz/tags/StatisticalMechanics" class="mention hashtag" rel="tag">#<span>StatisticalMechanics</span></a> <a href="https://mathstodon.xyz/tags/UnsupervisedLearning" class="mention hashtag" rel="tag">#<span>UnsupervisedLearning</span></a> <a href="https://mathstodon.xyz/tags/machine_learning" class="mention hashtag" rel="tag">#<span>machine_learning</span></a> <a href="https://mathstodon.xyz/tags/MonteCarlo" class="mention hashtag" rel="tag">#<span>MonteCarlo</span></a> <a href="https://mathstodon.xyz/tags/PhaseTransitions" class="mention hashtag" rel="tag">#<span>PhaseTransitions</span></a> <a href="https://mathstodon.xyz/tags/IsingModel" class="mention hashtag" rel="tag">#<span>IsingModel</span></a> <a href="https://mathstodon.xyz/tags/OpenScience" class="mention hashtag" rel="tag">#<span>OpenScience</span></a></p>