Jon Awbrey<p>Information = Comprehension × Extension • Selection 2.3<br />• <a href="https://inquiryintoinquiry.com/2024/10/06/information-comprehension-x-extension-selection-2-a/" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/10</span><span class="invisible">/06/information-comprehension-x-extension-selection-2-a/</span></a></p><p>❝The third and last kind of representations are “symbols” or general representations. They connote attributes and so connote them as to determine what they denote. To this class belong all “words” and all “conceptions”. Most combinations of words are also symbols. A proposition, an argument, even a whole book may be, and should be, a single symbol.❞</p><p>(Peirce 1866, pp. 467–468)</p><p>Reference —</p><p>Peirce, C.S. (1866), “The Logic of Science, or, Induction and Hypothesis”, Lowell Lectures of 1866, pp. 357–504 in Writings of Charles S. Peirce : A Chronological Edition, Volume 1, 1857–1866, Peirce Edition Project, Indiana University Press, Bloomington, IN, 1982.</p><p>Resources —</p><p>Inquiry Blog • Survey of Pragmatic Semiotic Information<br />• <a href="https://inquiryintoinquiry.com/2024/03/01/survey-of-pragmatic-semiotic-information-8/" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/03</span><span class="invisible">/01/survey-of-pragmatic-semiotic-information-8/</span></a></p><p>OEIS Wiki • Information = Comprehension × Extension<br />• <a href="https://oeis.org/wiki/Information_%3D_Comprehension_%C3%97_Extension" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Information_%3D_</span><span class="invisible">Comprehension_%C3%97_Extension</span></a></p><p>C.S. Peirce • Upon Logical Comprehension and Extension<br />• <a href="https://peirce.sitehost.iu.edu/writings/v2/w2/w2_06/v2_06.htm" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">peirce.sitehost.iu.edu/writing</span><span class="invisible">s/v2/w2/w2_06/v2_06.htm</span></a></p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="tag">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="tag">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Inference" class="mention hashtag" rel="tag">#<span>Inference</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="tag">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="tag">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="tag">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="tag">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/LogicOfScience" class="mention hashtag" rel="tag">#<span>LogicOfScience</span></a> <br /><a href="https://mathstodon.xyz/tags/Information" class="mention hashtag" rel="tag">#<span>Information</span></a> <a href="https://mathstodon.xyz/tags/Comprehension" class="mention hashtag" rel="tag">#<span>Comprehension</span></a> <a href="https://mathstodon.xyz/tags/Extension" class="mention hashtag" rel="tag">#<span>Extension</span></a> <a href="https://mathstodon.xyz/tags/InformationEqualsComprehensionTimesExtension" class="mention hashtag" rel="tag">#<span>InformationEqualsComprehensionTimesExtension</span></a> <br /><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="tag">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="tag">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Icon" class="mention hashtag" rel="tag">#<span>Icon</span></a> <a href="https://mathstodon.xyz/tags/Index" class="mention hashtag" rel="tag">#<span>Index</span></a> <a href="https://mathstodon.xyz/tags/Symbol" class="mention hashtag" rel="tag">#<span>Symbol</span></a> <a href="https://mathstodon.xyz/tags/PragmaticSemioticInformation" class="mention hashtag" rel="tag">#<span>PragmaticSemioticInformation</span></a></p>