mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.8K
active users

#homotopytheory

0 posts0 participants0 posts today
Counting Is Hard<p>I&#39;ve kind of always wondered what the point of definitions like a group is a non-empty set \(G\) with a binary operation \(d\) satisfying \(d(d(d(z,d(x, d(x,x))),d(z,d(y,d(x,x)))),x) = y\) is, other than because we can, but <a href="https://math.stackexchange.com/a/4366021" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">math.stackexchange.com/a/43660</span><span class="invisible">21</span></a> offers one such answer in terms of homotopy type</p><p><a href="https://mathstodon.xyz/tags/grouptheory" class="mention hashtag" rel="tag">#<span>grouptheory</span></a> <a href="https://mathstodon.xyz/tags/categorytheory" class="mention hashtag" rel="tag">#<span>categorytheory</span></a> <a href="https://mathstodon.xyz/tags/homotopytheory" class="mention hashtag" rel="tag">#<span>homotopytheory</span></a></p>
183231bcb<p><span>Stable homotopy theory implies the existence of release candidate homotopy theory, beta homotopy theory, and alpha homotopy theory.<br><br>(How long before a homotopy theorist tells me these are actual things?)<br><br></span><a href="https://transfem.social/tags/HomotopyTheory" rel="nofollow noopener noreferrer" target="_blank">#HomotopyTheory</a> <a href="https://transfem.social/tags/StableHomotopyTheory" rel="nofollow noopener noreferrer" target="_blank">#StableHomotopyTheory</a></p>
RanaldClouston<p>My <a href="https://fediscience.org/tags/blog" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>blog</span></a> this week is on the Blakers-Massey theorem, whose proof in homotopy type theory <a href="https://fediscience.org/tags/HoTT" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HoTT</span></a> is one of the key achievements of that community. <a href="https://blogs.fediscience.org/the-updated-scholar/2024/03/15/discussing-a-mechanization-of-the-blakers-massey-connectivity-theorem-in-homotopy-type-theory/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">blogs.fediscience.org/the-upda</span><span class="invisible">ted-scholar/2024/03/15/discussing-a-mechanization-of-the-blakers-massey-connectivity-theorem-in-homotopy-type-theory/</span></a> <a href="https://fediscience.org/tags/TypeTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TypeTheory</span></a> <a href="https://fediscience.org/tags/HomotopyTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HomotopyTheory</span></a></p>
Niles Johnson<p>Donald Yau and I have a new book out! 📘 🥳 </p><p>It&#39;s called &quot;Homotopy Theory of Enriched Mackey Functors&quot;, and I want to explain what those words mean!</p><p><a href="https://arxiv.org/abs/2212.04276" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">arxiv.org/abs/2212.04276</span><span class="invisible"></span></a></p><p>[thread about <a href="https://mathstodon.xyz/tags/HomotopyTheory" class="mention hashtag" rel="tag">#<span>HomotopyTheory</span></a>, <a href="https://mathstodon.xyz/tags/CategoryTheory" class="mention hashtag" rel="tag">#<span>CategoryTheory</span></a>, and <a href="https://mathstodon.xyz/tags/Mackey" class="mention hashtag" rel="tag">#<span>Mackey</span></a> functors]</p><p>(0/11)</p>
Jonathan<p>New paper from the indomitable Ze Wong and myself.<br>"The Operadic Nerve, Relative Nerve, and the Grothendieck Construction"<br><a href="https://arxiv.org/abs/1808.08020" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/1808.08020</span><span class="invisible"></span></a><br><a href="https://scholar.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://scholar.social/tags/categorytheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>categorytheory</span></a> <a href="https://scholar.social/tags/homotopytheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>homotopytheory</span></a></p>
Jonathan<p>Hey y'all, I'm a postdoc in <a href="https://scholar.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a>. I study <a href="https://scholar.social/tags/topology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>topology</span></a> <a href="https://scholar.social/tags/categorytheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>categorytheory</span></a> <a href="https://scholar.social/tags/homotopytheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>homotopytheory</span></a> and the scary sounding ∞-categories! Also excited about increasing representation in mathematics of trans people, women and people of color. Also involved in setting up the <a href="https://scholar.social/tags/postdoc" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>postdoc</span></a> <a href="https://scholar.social/tags/union" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>union</span></a> here at the University of Washington. Currently located in <a href="https://scholar.social/tags/seattle" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>seattle</span></a> but will probably be relocating in the next year because that's <a href="https://scholar.social/tags/postdoclife" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>postdoclife</span></a>. <a href="https://scholar.social/tags/introduction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>introduction</span></a></p>