Counting Is Hard<p>I've kind of always wondered what the point of definitions like a group is a non-empty set \(G\) with a binary operation \(d\) satisfying \(d(d(d(z,d(x, d(x,x))),d(z,d(y,d(x,x)))),x) = y\) is, other than because we can, but <a href="https://math.stackexchange.com/a/4366021" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">math.stackexchange.com/a/43660</span><span class="invisible">21</span></a> offers one such answer in terms of homotopy type</p><p><a href="https://mathstodon.xyz/tags/grouptheory" class="mention hashtag" rel="tag">#<span>grouptheory</span></a> <a href="https://mathstodon.xyz/tags/categorytheory" class="mention hashtag" rel="tag">#<span>categorytheory</span></a> <a href="https://mathstodon.xyz/tags/homotopytheory" class="mention hashtag" rel="tag">#<span>homotopytheory</span></a></p>