mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

3K
active users

#geometry

20 posts15 participants0 posts today
foldworks<p>Window, North Gate, Imperial Citadel of Thăng Long, Hanoi, Vietnam <a href="https://en.wikipedia.org/wiki/Imperial_Citadel_of_Th%C4%83ng_Long#North_Gate_(C%E1%BB%ADa_B%E1%BA%AFc,_or_B%E1%BA%AFc_M%C3%B4n)" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Imperial</span><span class="invisible">_Citadel_of_Th%C4%83ng_Long#North_Gate_(C%E1%BB%ADa_B%E1%BA%AFc,_or_B%E1%BA%AFc_M%C3%B4n)</span></a><br /><a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="tag">#<span>Tiling</span></a> <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="tag">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/Pattern" class="mention hashtag" rel="tag">#<span>Pattern</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="tag">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="tag">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/MathsArt" class="mention hashtag" rel="tag">#<span>MathsArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="tag">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/architecture" class="mention hashtag" rel="tag">#<span>architecture</span></a></p>
꧁ᐊ𰻞ᵕ̣̣̣̣̣̣́́♛ᵕ̣̣̣̣̣̣́́𰻞ᐅ꧂<p>Diagonal ✝️section of ðe 4d cartesian product of 2 "I want to be a sea urchin and eat cabbage"(yes, really) tilings</p><p>⬛🟦⬛<br>🟧⬜🟧 kinda like ðis<br>⬛🟦⬛</p><p>Unfortunately we are still too dimensionally, perceptually, &amp; probably intellectually challenged to even try to look at ðe full θing 😔</p><p><a href="https://mastodon.gamedev.place/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mastodon.gamedev.place/tags/tiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tiling</span></a> <a href="https://mastodon.gamedev.place/tags/mathart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathart</span></a> <a href="https://mastodon.gamedev.place/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mastodon.gamedev.place/tags/mastoart" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mastoart</span></a> <a href="https://mastodon.gamedev.place/tags/4d" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>4d</span></a> <a href="https://mastodon.gamedev.place/tags/abstract" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>abstract</span></a></p>
Albert P. Carpenter<p>Kepler pentafoil knot <a href="https://mathstodon.xyz/tags/knottheory" class="mention hashtag" rel="tag">#<span>knottheory</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/topology" class="mention hashtag" rel="tag">#<span>topology</span></a> <a href="https://mathstodon.xyz/tags/knots" class="mention hashtag" rel="tag">#<span>knots</span></a> <a href="https://mathstodon.xyz/tags/stem" class="mention hashtag" rel="tag">#<span>stem</span></a> <a href="https://mathstodon.xyz/tags/steam" class="mention hashtag" rel="tag">#<span>steam</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="tag">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/art" class="mention hashtag" rel="tag">#<span>art</span></a></p>
n-gons<p>It&#39;s <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="tag">#<span>TilingTuesday</span></a> !</p><p>Tiling of 12 colourful ducks.</p><p><a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="tag">#<span>Tiling</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="tag">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="tag">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/Art" class="mention hashtag" rel="tag">#<span>Art</span></a></p>
Chris Purcell<p>No one answered my question the other day but I&#39;m sure someone here will know the answer or at least be interested so I&#39;ll try again with some hashtags: <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="tag">#<span>mathematics</span></a> </p><p>If I know the sin and/or cos of an angle, what can I deduce about the &quot;rationality&quot; of the angle. Are there necessary or sufficient conditions for the angle to be 𝑞π for some rational 𝑞 ?</p><p>To put it another way, do rational angles have &quot;simple&quot; sin and/or cos values?</p>
n-gons<p>Fun with chiral shapes - cube from snub cubes.</p><p><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="tag">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="tag">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="tag">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/Polyhedron" class="mention hashtag" rel="tag">#<span>Polyhedron</span></a> <a href="https://mathstodon.xyz/tags/Hedron" class="mention hashtag" rel="tag">#<span>Hedron</span></a></p>
Jean-Baptiste Etienne<p>Un pavage de Truchet modifiable en cliquant sur les triangles d&#39;une zone bien précise.<br /><a href="https://www.geogebra.org/m/pngnrsgh" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://www.</span><span class="">geogebra.org/m/pngnrsgh</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/truchet" class="mention hashtag" rel="tag">#<span>truchet</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="tag">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="tag">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/triangle" class="mention hashtag" rel="tag">#<span>triangle</span></a></p>
Jean-Baptiste Etienne<p>Patrons de pyramides &quot;coupées&quot; par un plan.</p><p><a href="https://www.geogebra.org/m/kjmjkmkj" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://www.</span><span class="">geogebra.org/m/kjmjkmkj</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="tag">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/geogebra3D" class="mention hashtag" rel="tag">#<span>geogebra3D</span></a> <a href="https://mathstodon.xyz/tags/pyramid" class="mention hashtag" rel="tag">#<span>pyramid</span></a> <a href="https://mathstodon.xyz/tags/net" class="mention hashtag" rel="tag">#<span>net</span></a> <a href="https://mathstodon.xyz/tags/section" class="mention hashtag" rel="tag">#<span>section</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a></p>
Jean-Baptiste Etienne<p>Patrons de pyramide à base régulières.<br />Un alternative au patrons générés par <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="tag">#<span>geogebra</span></a>.</p><p><a href="https://www.geogebra.org/m/ucd4hts7" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://www.</span><span class="">geogebra.org/m/ucd4hts7</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/pyramid" class="mention hashtag" rel="tag">#<span>pyramid</span></a> <a href="https://mathstodon.xyz/tags/net" class="mention hashtag" rel="tag">#<span>net</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="tag">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a></p>
Albert P. Carpenter<p>3D print based on design by Tadeusz Dorozinski <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="tag">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/stem" class="mention hashtag" rel="tag">#<span>stem</span></a> <a href="https://mathstodon.xyz/tags/steam" class="mention hashtag" rel="tag">#<span>steam</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="tag">#<span>polyhedra</span></a> <a href="https://mathstodon.xyz/tags/3dprinting" class="mention hashtag" rel="tag">#<span>3dprinting</span></a> <a href="https://mathstodon.xyz/tags/3dprintedmath" class="mention hashtag" rel="tag">#<span>3dprintedmath</span></a> @thingiverse @cults3d</p>
Albert P. Carpenter<p>2 knots: trefoil and pentafoil composed of rhombicosidodecahedra that can represent points as well <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/topology" class="mention hashtag" rel="tag">#<span>topology</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/geometrictopology" class="mention hashtag" rel="tag">#<span>geometrictopology</span></a> <a href="https://mathstodon.xyz/tags/knots" class="mention hashtag" rel="tag">#<span>knots</span></a> <a href="https://mathstodon.xyz/tags/knottheory" class="mention hashtag" rel="tag">#<span>knottheory</span></a></p>
Jean-Baptiste Etienne<p>🐍 🐍 🐍 </p><p><a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="tag">#<span>geogebra</span></a> file :<a href="https://www.geogebra.org/m/tfqb4egm" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://www.</span><span class="">geogebra.org/m/tfqb4egm</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/hexagon" class="mention hashtag" rel="tag">#<span>hexagon</span></a> <a href="https://mathstodon.xyz/tags/spiral" class="mention hashtag" rel="tag">#<span>spiral</span></a> <a href="https://mathstodon.xyz/tags/polygonales" class="mention hashtag" rel="tag">#<span>polygonales</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="tag">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/fun" class="mention hashtag" rel="tag">#<span>fun</span></a></p>
Albert P. Carpenter<p>Klein surface <a href="https://mathstodon.xyz/tags/Kleinbottle" class="mention hashtag" rel="tag">#<span>Kleinbottle</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/topology" class="mention hashtag" rel="tag">#<span>topology</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a></p>
Albert P. Carpenter<p>With over 1500 math models and art, I happily invite all to come and explore. I hope there will be something to inspire you! All the content is in the creative commons. So, feel free to use it! <a href="https://sites.google.com/view/structuralgeometry/home" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">sites.google.com/view/structur</span><span class="invisible">algeometry/home</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/topology" class="mention hashtag" rel="tag">#<span>topology</span></a> <a href="https://mathstodon.xyz/tags/3dprinting" class="mention hashtag" rel="tag">#<span>3dprinting</span></a> <a href="https://mathstodon.xyz/tags/3dprintedmath" class="mention hashtag" rel="tag">#<span>3dprintedmath</span></a></p>
Jean-Baptiste Etienne<p>🐍 </p><p><a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/hexagon" class="mention hashtag" rel="tag">#<span>hexagon</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="tag">#<span>geogebra</span></a></p>
Dani Laura (they/she/he)<p>These two art pieces are based on the deformation of a hexagonal tiling into a topologically equivalent &quot;tiling&quot; composed of parts of concentric circles, all parts having the same area (third image). Selecting one hexagon as the center, we transform it into a circle of radius 1. Next concentric circle will hold the 6 adjacent tiles as sectors of rings. And so on, the circle of level n will have radius sqrt(1+3·n·(n+1)) (difference of radius when n tends to infinity approaches sqrt(3)). This map can be coloured with three colours, like the hexagonal tiling. For the artwork, suppose each sector of ring is in fact a sector of a circle hidden by inner pieces. Then choose a colour and delete all pieces not of this colour. Two distinct set of sectors can be produced, one choosing the central colour, one choosing another colour. Finally recolour the pieces according to its size.<br /><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="tag">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/Art" class="mention hashtag" rel="tag">#<span>Art</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="tag">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="tag">#<span>tiling</span></a></p>
Alessandro CesarRoma.<br> <br> <br> <a href="https://pixelfed.social/discover/tags/architecture?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#architecture</a> <a href="https://pixelfed.social/discover/tags/structure?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#structure</a> <a href="https://pixelfed.social/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#geometry</a> <a href="https://pixelfed.social/discover/tags/perspective?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#perspective</a> <a href="https://pixelfed.social/discover/tags/bnwphotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#bnwphotography</a> <a href="https://pixelfed.social/discover/tags/urbanexploration?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#urbanexploration</a> <a href="https://pixelfed.social/discover/tags/photography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#photography</a>-bw <a href="https://pixelfed.social/discover/tags/blackandwhitephotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#blackandwhitephotography</a> <a href="https://pixelfed.social/discover/tags/pretoebranco?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#pretoebranco</a> <a href="https://pixelfed.social/discover/tags/bnw?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#bnw</a>
FotoapparatContrasted shaped blocks. Namen, 03.2025<br> ilford hp5 plus 400<br> <a href="https://pixelfed.social/discover/tags/filmphotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#filmphotography</a> <a href="https://pixelfed.social/discover/tags/urbanphotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#urbanphotography</a> <a href="https://pixelfed.social/discover/tags/streetphotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#streetphotography</a> <a href="https://pixelfed.social/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#geometry</a> <a href="https://pixelfed.social/discover/tags/blackandwhite?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#blackandwhite</a>
Albert P. Carpenter<p>Graphic design of a Stewart star dodecahedral polytoroid and 3D print: design components: cubes, J92s, J5s, decagonal pyramids. <a href="https://mathstodon.xyz/tags/3dprintedmath" class="mention hashtag" rel="tag">#<span>3dprintedmath</span></a> <a href="https://mathstodon.xyz/tags/3dprinting" class="mention hashtag" rel="tag">#<span>3dprinting</span></a> <a href="https://mathstodon.xyz/tags/stem" class="mention hashtag" rel="tag">#<span>stem</span></a> <a href="https://mathstodon.xyz/tags/steam" class="mention hashtag" rel="tag">#<span>steam</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="tag">#<span>polyhedra</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="tag">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/art" class="mention hashtag" rel="tag">#<span>art</span></a></p>
Dani Laura (they/she/he)<p>Continuing with fractals related to squares and silver ratio diminution, a new creature of the fractal sea, along with the underlying squares version.<br /><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="tag">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/art" class="mention hashtag" rel="tag">#<span>art</span></a> <a href="https://mathstodon.xyz/tags/SilverRatio" class="mention hashtag" rel="tag">#<span>SilverRatio</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="tag">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="tag">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="tag">#<span>fractal</span></a></p>