mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.8K
active users

#Floer

0 posts0 participants0 posts today
Charlotte Kirchhoff-Lukat<p><a href="https://mathstodon.xyz/tags/TodaysMath" class="mention hashtag" rel="tag">#<span>TodaysMath</span></a> 2/2: The appropriate <a href="https://mathstodon.xyz/tags/Floer" class="mention hashtag" rel="tag">#<span>Floer</span></a> <a href="https://mathstodon.xyz/tags/cohomology" class="mention hashtag" rel="tag">#<span>cohomology</span></a> theory to associate to (composable) Lagrangian correspondences is *quilted Floer cohomology*. I like this paper by Wehrheim and Woodward to learn about it: <br /><a href="https://arxiv.org/abs/0905.1368" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">arxiv.org/abs/0905.1368</span><span class="invisible"></span></a></p>
Charlotte Kirchhoff-Lukat<p><a href="https://mathstodon.xyz/tags/Reference" class="mention hashtag" rel="tag">#<span>Reference</span></a> request: I am attending a learning seminar on <a href="https://mathstodon.xyz/tags/Floer" class="mention hashtag" rel="tag">#<span>Floer</span></a> <a href="https://mathstodon.xyz/tags/Homotopy" class="mention hashtag" rel="tag">#<span>Homotopy</span></a> theory this semester. Coming from the symplectic side of things, I could use a nice accessible reference on the <a href="https://mathstodon.xyz/tags/algebra" class="mention hashtag" rel="tag">#<span>algebra</span></a> side, specifically on stable ∞ -<a href="https://mathstodon.xyz/tags/categories" class="mention hashtag" rel="tag">#<span>categories</span></a> and the category of spectra in particular. <br />I already have Chapter 1 of *Higher Algebra* by Jacob Lurie. <br />Anybody have any other good suggestions? (Ideally ones that do not require the whole kitchen sink of model categories.)<br />Thanks in advance! 🙂 :k5:<br /><a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a></p>
Charlotte Kirchhoff-Lukat<p><a href="https://mathstodon.xyz/tags/ExplainingMyResearch" class="mention hashtag" rel="tag">#<span>ExplainingMyResearch</span></a> 23<br />To start, I am working on 2-dimensional &quot;universes&quot; like the disc with boundary, which are not strictly speaking GC, but similar enough to be useful.<br />My <a href="https://mathstodon.xyz/tags/preprint" class="mention hashtag" rel="tag">#<span>preprint</span></a> <br /><a href="https://arxiv.org/abs/2207.06894" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">arxiv.org/abs/2207.06894</span><span class="invisible"></span></a><br />describes how to define <a href="https://mathstodon.xyz/tags/Floer" class="mention hashtag" rel="tag">#<span>Floer</span></a> <a href="https://mathstodon.xyz/tags/cohomology" class="mention hashtag" rel="tag">#<span>cohomology</span></a> for so-called log-<a href="https://mathstodon.xyz/tags/symplectic" class="mention hashtag" rel="tag">#<span>symplectic</span></a> surfaces. I am currently finishing off the full description of the category of branes in this setting, so keep your eyes open! 🙂</p>
Charlotte Kirchhoff-Lukat<p><a href="https://mathstodon.xyz/tags/ExplainingMyResearch" class="mention hashtag" rel="tag">#<span>ExplainingMyResearch</span></a> 17<br />Now, in this particular setting, this does not seem very useful - you can tell what the minimal number of intersection points is by just looking at the picture and mentally &quot;smoothing out&quot; the wiggles in the middle - the minimal number is either 0 or 1.<br />But this is actually just an extremely simple example of a complicated invariant called <a href="https://mathstodon.xyz/tags/Floer" class="mention hashtag" rel="tag">#<span>Floer</span></a> <a href="https://mathstodon.xyz/tags/cohomology" class="mention hashtag" rel="tag">#<span>cohomology</span></a>, which is central to the <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="tag">#<span>math</span></a> description of <a href="https://mathstodon.xyz/tags/MirrorSymmetry" class="mention hashtag" rel="tag">#<span>MirrorSymmetry</span></a>!</p>