mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.8K
active users

#2024gofm

1 post1 participant0 posts today
Nicole Sharp<p><strong>Drops on the Edge</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/part_drop1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/part_drop2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/part_drop3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Drops impacting a dry hydrophilic surface flatten into a film. Drops that impact a wet film throw up a crown-shaped splash. But what happens when a drop hits the edge of a wet surface? That’s the situation explored in this video, where blue-dyed drops interact with a red-dyed film. From every angle, the impact is complex — sending up partial crown splashes, generating capillary waves that shift the contact line, and chaotically mixing the drop and film’s liquids. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2691061" rel="nofollow noopener noreferrer" target="_blank">A. Sauret et al.</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/crown-splash/" target="_blank">#crownSplash</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplet-impact/" target="_blank">#dropletImpact</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/wetting/" target="_blank">#wetting</a></p>
Nicole Sharp<p><strong>Salt Fingers</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Any time a fluid under gravity has areas of differing density, it convects. We’re used to thinking of this in terms of temperature — “hot air rises” — but temperature isn’t the only source of convection. Differences in concentration — like salinity in water — cause convection, too. This video shows a special, more complex case: what happens when there are <a href="https://en.wikipedia.org/wiki/Double_diffusive_convection" rel="nofollow noopener noreferrer" target="_blank">two sources of density gradient</a>, each of which diffuses at a different rate.</p><p>The classic example of this occurs in the ocean, where colder fresher water meets warmer, saltier water (and vice versa). Cold water tends to sink. So does saltier water. But since temperature and salinity move at different speeds, their competing convection takes on a shape that resembles dancing, finger-like plumes as seen here. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2677989" rel="nofollow noopener noreferrer" target="_blank">M. Mohaghar et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/convection/" target="_blank">#convection</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/double-diffusive-convection/" target="_blank">#doubleDiffusiveConvection</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/double-diffusive-instability/" target="_blank">#doubleDiffusiveInstability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/oceanography/" target="_blank">#oceanography</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Twisting in the Flow</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/liqcrys1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/liqcrys2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/liqcrys3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>What happens to liquid crystals in a flow? In this video, researchers look at liquid crystals flowing through the narrow gap of a microfluidic device. Initially, all the crystals are oriented the same way, as if they are logs rolling down a river. But as the flow rate increases, narrow lines appear in the flow, followed by disordered regions, and, eventually, a new configuration: vertical bands streaking the left-to-right flow. The colors, in this case, indicate the orientation of the liquid crystals. As the researchers show, the crystals collectively twist to form the spontaneous bands. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2685277" rel="nofollow noopener noreferrer" target="_blank">D. Jia and I. Bischofberger</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/liquid-crystals/" target="_blank">#liquidCrystals</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Salt Affects Particle Spreading</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/salt_mp1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/salt_mp2-1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/salt_mp3-1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Microplastics are proliferating in our oceans (and everywhere else). This video takes a look at how salt and salinity gradients could affect the way plastics move. The researchers begin with a liquid bath sandwiched between a bed of magnets and electrodes. Using Lorentz forcing, they create an essentially 2D flow field that is ordered or chaotic, depending on the magnets’ configuration. Although it’s driven very differently, the flow field resembles the way the upper layer of the ocean moves and mixes. </p><p>The researchers then introduce colloids (particles that act as an analog for microplastics) and a bit of salt. Depending on the salinity gradient in the bath, the colloids can be attracted to one another or repelled. As the team shows, the resulting spread of colloids depends strongly on these salinity conditions, suggesting that microplastics, too, could see stronger dispersion or trapping depending on salinity changes. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2641007" rel="nofollow noopener noreferrer" target="_blank">M. Alipour et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/electrohydrodynamics/" target="_blank">#electrohydrodynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetic-field/" target="_blank">#magneticField</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plastic-pollution/" target="_blank">#plasticPollution</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>A Drop’s Shape Effects</strong></p><p>Falling raindrops get distorted by the air rushing past them, ultimately breaking large droplets into many smaller ones. This research poster shows how variable this process is by showing two different raindrops, both of the same 8-mm initial diameter. On the left, the drop is prolate — longer than it is wide — and on the right, the drop is oblate — wider than it is long. Moving from bottom to top, we see a series of snapshots of each drop’s shape as it deforms and, eventually, breaks into smaller drops. The overall process is similar for each: the drop flattens, dimples, and then inflates like a sail, with part of the drop thinning into a sheet and ultimately breaking into smaller droplets. Yet, each drop’s specific details are entirely different. (Image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.P2691171" rel="nofollow noopener noreferrer" target="_blank">S. Dighe et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bag/" target="_blank">#bag</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplet-breakup/" target="_blank">#dropletBreakup</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/raindrops/" target="_blank">#raindrops</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Kolmogorov Turbulence</strong></p><p>Turbulent flows are ubiquitous, but they’re also mindbogglingly complex: ever-changing in both time and space across length scales both large and small. To try to unravel this complexity, scientists use simplified model problems. One such simplification is <a href="https://file.scirp.org/pdf/JAMP_2018111610542834.pdf" rel="nofollow noopener noreferrer" target="_blank">Kolmogorov flow</a>: an imaginary flow where the fluid is forced back and forth sinusoidally. This large-scale forcing puts energy into the flow that cascades down to smaller length scales through the <a href="https://en.wikipedia.org/wiki/Energy_cascade" rel="nofollow noopener noreferrer" target="_blank">turbulent energy cascade</a>. Here, researchers depict a numerical simulation of a turbulent Kolmogorov flow. The colors represent the flow’s vorticity field. Notice how your eye can pick out both tiny eddies and larger clusters in the flow; those patterns reflect the multi-scale nature of turbulence. (Image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.P2579354" rel="nofollow noopener noreferrer" target="_blank">C. Amores and M. Graham</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/kolmogorov/" target="_blank">#Kolmogorov</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/numerical-simulation/" target="_blank">#numericalSimulation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulent-energy-cascade/" target="_blank">#turbulentEnergyCascade</a></p>
Nicole Sharp<p><strong>Visualizing Unstable Flames</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/thermo_instab1.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/thermo_instab2.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/thermo_instab3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Inside a combustion chamber, temperature fluctuations can cause sound waves that also disrupt the flow, in turn. This is called a thermoacoustic instability. In this video, researchers explore this process by watching how flames move down a tube. The flame fronts begin in an even curve that flattens out and then develops waves like those on a vibrating pool. Those waves grow bigger and bigger until the flame goes completely turbulent. Visually, it’s mesmerizing. Mathematically, it’s a lovely example of <a href="https://en.wikipedia.org/wiki/Parametric_oscillator" rel="nofollow noopener noreferrer" target="_blank">parametric resonance</a>, where the flame’s instability is fed by system’s natural harmonics. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2561866" rel="nofollow noopener noreferrer" target="_blank">J. Delfin et al.</a>; research credit: J. Delfin et al. <a href="https://doi.org/10.1016/j.fuel.2024.132344" rel="nofollow noopener noreferrer" target="_blank">1</a>, <a href="https://doi.org/10.1016/j.proci.2024.105322" rel="nofollow noopener noreferrer" target="_blank">2</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/combustion/" target="_blank">#combustion</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/combustion-instability/" target="_blank">#combustionInstability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flame/" target="_blank">#flame</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/parametric-resonance/" target="_blank">#parametricResonance</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/resonance/" target="_blank">#resonance</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/thermoacoustic-instability/" target="_blank">#thermoacousticInstability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>“Kirigami Sun”</strong></p><p><a href="https://en.wikipedia.org/wiki/Kirigami" rel="nofollow noopener noreferrer" target="_blank">Kirigami</a> is a variation of origami in which paper can be cut as well as folded. Here, researchers look at flow through a cut kirigami sheet and how that flow changes with the cuts’ length. In the top central image, white lines mark the paper boundaries. As the cut gaps get larger, flow through them transitions from a continuous jet to swirling vortex shedding. Along the bottom, we see similar patterns emerge in the wake of uniformly-cut sheets, too. On the right, the flow comes through in jets; moving leftward, it transitions to an unsteady vortex shedding flow. (Image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.P2684224" rel="nofollow noopener noreferrer" target="_blank">D. Caraeni and Y. Modarres-Sadeghi</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/jets/" target="_blank">#jets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/vortex-shedding/" target="_blank">#vortexShedding</a></p>
Nicole Sharp<p><strong>Galloping Bubbles</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/galbub1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/galbub2.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/galbub3.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>A buoyant bubble rises until it’s stopped by a wall. What happens, this video asks, if that wall vibrates up and down? If the vibration is large enough, the bubble loses its symmetry and starts to gallop along the wall. Using numerical simulations, the team determined the flow around the bubble. They also demonstrate several possible applications for this behavior: sorting bubbles by size, traversing mazes, and cleaning a surface. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2684816" rel="nofollow noopener noreferrer" target="_blank">J. Guan et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bubbles/" target="_blank">#bubbles</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/experimental-fluid-dynamics/" target="_blank">#experimentalFluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/numerical-simulation/" target="_blank">#numericalSimulation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/vibration/" target="_blank">#vibration</a></p>
Nicole Sharp<p><strong>Explosively Jetting</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/exp_drop1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/exp_drop2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/exp_drop3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Dropping water from a plastic pipette onto a pool of oil electrically charges the drop. Then, as it evaporates, it shrinks and concentrates the charges closer and closer. Eventually, the strength of the electrical charge overcomes surface tension, making the drop form a cone-shaped edge that jets out tiny, highly-charged microdrops. Afterward, the drop returns to its spherical shape… until shrinkage builds up the charge density again. This microjetting behavior can carry on for hours! (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2634768" rel="nofollow noopener noreferrer" target="_blank">M. Lin et al.</a>; research preprint: <a href="https://www.researchgate.net/publication/381001957_Exploding_drops_on_lubricated_surfaces" rel="nofollow noopener noreferrer" target="_blank">M. Lin et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/electrostatic-charge/" target="_blank">#electrostaticCharge</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/jetting/" target="_blank">#jetting</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/satellite-droplets/" target="_blank">#satelliteDroplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sessile-drop/" target="_blank">#sessileDrop</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-tension/" target="_blank">#surfaceTension</a></p>
Nicole Sharp<p><strong>Instabilities in Competition</strong></p><p>When two liquid jets collide, they form a thin liquid sheet with a thicker rim. That rim breaks into threads and then droplets, forming a well-known fishbone pattern as the Plateau-Rayleigh instability breaks up the flow. This poster shows a twist on that set-up: here, the two colliding jets vary slightly in their velocities. That variability adds a second instability to the system, visible as the wavy pattern on the central liquid sheet. The sheet’s rim still breaks apart in the usual fishbone pattern, but the growing waves in the center of the sheet eventually that structure apart as well. (Image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.P2692828" rel="nofollow noopener noreferrer" target="_blank">S. Dighe et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fishbone/" target="_blank">#fishbone</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/jet-collision/" target="_blank">#jetCollision</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plateau-rayleigh-instability/" target="_blank">#PlateauRayleighInstability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>The Mystery of the Binary Droplet</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/binar_drop1.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/binar_drop2.gif" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/binar_drop3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>What goes on inside an evaporating droplet made up of more than one fluid? This is a perennially fascinating question with lots of permutations. In this one, <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2685343" rel="nofollow noopener noreferrer" target="_blank">researchers observed</a> water-poor spots forming around the edges of an evaporating drop, almost as if the two chemicals within the drop are physically separating from one another (scientifically speaking, “undergoing phase separation“). To find out if this was really the case, they put particles into the drop and observed their behavior as the drop evaporated. What they found is that this is a flow behavior, not a phase one. The high concentration of hexanediol near the edge of the drop changes the value of surface tension between the center and edge of the drop. And that change is non-monotonic, meaning that there’s a minimum in the surface tension partway along the drop’s radius. That surface tension minimum is what creates the separated regions of flow. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2685343" rel="nofollow noopener noreferrer" target="_blank">P. Dekker et al.</a>; research pre-print: <a href="https://doi.org/10.48550/arXiv.2402.17452" rel="nofollow noopener noreferrer" target="_blank">C. Diddens et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/evaporation/" target="_blank">#evaporation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-tension/" target="_blank">#surfaceTension</a></p>