mathstodon.xyz is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon instance for maths people. We have LaTeX rendering in the web interface!

Server stats:

2.7K
active users

#bayesian

1 post1 participant0 posts today
safest_integer<p>The new <a href="https://mastodon.social/tags/pope" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pope</span></a> has a degree in <a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> and wrote a <a href="https://mastodon.social/tags/PhD" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PhD</span></a> thesis on "The role of the local prior" which I assume is a contribution to <a href="https://mastodon.social/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> <a href="https://mastodon.social/tags/statistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistics</span></a>. </p><p><a href="https://en.m.wikipedia.org/wiki/Pope_Leo_XIV" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.m.wikipedia.org/wiki/Pope_L</span><span class="invisible">eo_XIV</span></a></p>
Mathematik aus Karlsruhe<p>Modell253: Nadja and Moussa focus on the intersection of statistics and machine learning, in paticular on Bayesian methods, which allow to incorporate prior knowledge, quantify incertainties, and bring insides into the „black boxes“ of machine learning.</p><p><a href="https://modellansatz.de/bayesian-learning" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">modellansatz.de/bayesian-learn</span><span class="invisible">ing</span></a></p><p><a href="https://podcasts.social/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://podcasts.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataScience</span></a> <a href="https://podcasts.social/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> <a href="https://podcasts.social/tags/Podcast" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Podcast</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #335 Bayesian New Statistics</p><p>Thoughts: An influential paper with a great overview of different approaches to research.</p><p><a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/nhst" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nhst</span></a> <a href="https://mastodon.social/tags/nhbt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nhbt</span></a> <a href="https://mastodon.social/tags/estimation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>estimation</span></a> <a href="https://mastodon.social/tags/testing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>testing</span></a> <a href="https://mastodon.social/tags/frequentist" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>frequentist</span></a> <br> <a href="https://link.springer.com/content/pdf/10.3758/s13423-016-1221-4.pdf" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">link.springer.com/content/pdf/</span><span class="invisible">10.3758/s13423-016-1221-4.pdf</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #334 Workflow Techniques for the Robust Use of Bayes Factors</p><p>Thoughts: "We outline a Bayes factor workflow that researchers can use to study whether Bayes factors are robust for their individual analysis"</p><p><a href="https://mastodon.social/tags/bayesfactors" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesfactors</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>r</span></a> <a href="https://mastodon.social/tags/robust" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>robust</span></a> </p><p><a href="https://arxiv.org/abs/2103.08744" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2103.08744</span><span class="invisible"></span></a></p>
Martin Modrák<p>I am trying to get a better sense of the literature on frequentist properties of Bayesian posterior distributions - both empirical and theoretical. Do you have any recommendations on stuff I should not miss? <a href="https://bayes.club/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a> <a href="https://bayes.club/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://bayes.club/tags/LitReviews" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LitReviews</span></a></p>
JMLR<p>'Determine the Number of States in Hidden Markov Models via Marginal Likelihood', by Yang Chen, Cheng-Der Fuh, Chu-Lan Michael Kao.</p><p><a href="http://jmlr.org/papers/v26/23-0343.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v26/23-0343.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/markov" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>markov</span></a> <a href="https://sigmoid.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://sigmoid.social/tags/likelihood" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>likelihood</span></a></p>
tagesschau<p>Die schwierige Bergung der Luxusjacht "Bayesian"</p><p>Eine riesige Luxusjacht sinkt im Mittelmeer: Das Unglück der "Bayesian", bei dem sieben Menschen starben, sorgte 2024 für Schlagzeilen und Spekulationen. Nun soll das Wrack geborgen werden, doch die Aktion verzögert sich.</p><p>➡️ <a href="https://www.tagesschau.de/ausland/europa/bayesian-bergung-100.html?at_medium=mastodon&amp;at_campaign=tagesschau.de" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">tagesschau.de/ausland/europa/b</span><span class="invisible">ayesian-bergung-100.html?at_medium=mastodon&amp;at_campaign=tagesschau.de</span></a></p><p><a href="https://ard.social/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a></p>
pglpm<p>I'd like to move the Git repo for my R protopackage ("Inferno") from GitHub to Codeberg. I was wondering if Codeberg offers (even paying of course) something similar to GitHub pages, by which I mean something like this: <a href="https://pglpm.github.io/inferno" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">pglpm.github.io/inferno</span><span class="invisible"></span></a></p><p>From what I understand, the Codeberg pages &lt;<a href="https://docs.codeberg.org/codeberg-pages" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">docs.codeberg.org/codeberg-pag</span><span class="invisible">es</span></a>&gt; should be something equivalent – but I'm not fully sure. Is that correct? And does anyone have examples of Codeberg pages of R packages, just to see their functionality? I didn't manage to find any examples.</p><p>Cheers!</p><p><a href="https://c.im/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a> <a href="https://c.im/tags/codeberg" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>codeberg</span></a> <a href="https://c.im/tags/git" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>git</span></a> <a href="https://c.im/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a></p>
💧🌏 Greg Cocks<p>Environmental &amp; Anthropogenic Influences On Fire Patterns In Tropical Dry Deciduous Forests<br>--<br><a href="https://doi.org/10.1038/s41598-025-98051-7" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1038/s41598-025-980</span><span class="invisible">51-7</span></a> &lt;-- shared paper<br>--<br><a href="https://techhub.social/tags/GIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GIS</span></a> <a href="https://techhub.social/tags/spatial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spatial</span></a> <a href="https://techhub.social/tags/mapping" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mapping</span></a> <a href="https://techhub.social/tags/wildfire" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>wildfire</span></a> <a href="https://techhub.social/tags/fire" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fire</span></a> <a href="https://techhub.social/tags/busgfire" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>busgfire</span></a> <a href="https://techhub.social/tags/nvironmental" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nvironmental</span></a> <a href="https://techhub.social/tags/anthropogenic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>anthropogenic</span></a> <a href="https://techhub.social/tags/influences" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>influences</span></a> <a href="https://techhub.social/tags/humanimpacts" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>humanimpacts</span></a> <a href="https://techhub.social/tags/deciduous" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>deciduous</span></a> <a href="https://techhub.social/tags/forests" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>forests</span></a> <a href="https://techhub.social/tags/firepatterns" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>firepatterns</span></a> <a href="https://techhub.social/tags/spatialanalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spatialanalysis</span></a> <a href="https://techhub.social/tags/tropical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tropical</span></a> <a href="https://techhub.social/tags/ecosystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ecosystems</span></a> <a href="https://techhub.social/tags/management" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>management</span></a> <a href="https://techhub.social/tags/tree" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tree</span></a> <a href="https://techhub.social/tags/vegetation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>vegetation</span></a> <a href="https://techhub.social/tags/spatiotemporal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spatiotemporal</span></a> <a href="https://techhub.social/tags/hotspots" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hotspots</span></a> <a href="https://techhub.social/tags/india" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>india</span></a> <a href="https://techhub.social/tags/Satpura" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Satpura</span></a> <a href="https://techhub.social/tags/tiger" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tiger</span></a> <a href="https://techhub.social/tags/reserve" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>reserve</span></a> <a href="https://techhub.social/tags/ecogeography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ecogeography</span></a> <a href="https://techhub.social/tags/geography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geography</span></a> <a href="https://techhub.social/tags/factors" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>factors</span></a> <a href="https://techhub.social/tags/parameters" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>parameters</span></a> <a href="https://techhub.social/tags/drivers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>drivers</span></a> <a href="https://techhub.social/tags/temperature" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>temperature</span></a> <a href="https://techhub.social/tags/precipitation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>precipitation</span></a> <a href="https://techhub.social/tags/rainfall" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rainfall</span></a> <a href="https://techhub.social/tags/model" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>model</span></a> <a href="https://techhub.social/tags/modeling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modeling</span></a> <a href="https://techhub.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://techhub.social/tags/framework" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>framework</span></a> <a href="https://techhub.social/tags/slope" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>slope</span></a> <a href="https://techhub.social/tags/water" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>water</span></a> <a href="https://techhub.social/tags/hydrology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hydrology</span></a> <a href="https://techhub.social/tags/infrastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>infrastructure</span></a> <a href="https://techhub.social/tags/mitigation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mitigation</span></a> <a href="https://techhub.social/tags/monitoring" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>monitoring</span></a> <a href="https://techhub.social/tags/preparedness" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>preparedness</span></a> <a href="https://techhub.social/tags/forestfires" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>forestfires</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #329 Bayesian versus frequentist approaches in multilevel single-case designs: on power and type I error rate</p><p>Thoughts: An interesting project highlighting some benefits of <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> methods for <a href="https://mastodon.social/tags/nof1" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nof1</span></a> designs.</p><p><a href="https://mastodon.social/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a> <a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>r</span></a> <a href="https://mastodon.social/tags/sced" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sced</span></a> <a href="https://mastodon.social/tags/mixedeffects" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mixedeffects</span></a></p><p><a href="https://osf.io/k7b82/files/osfstorage" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">osf.io/k7b82/files/osfstorage</span><span class="invisible"></span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #328 How to Assess Task Reliability using Bayesian Mixed Models<br>by @Dom_Makowski</p><p>Thoughts: Nice walkthrough using {brms}, with code, data gen, and plots.</p><p><a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>r</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/mixedeffects" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mixedeffects</span></a> <a href="https://mastodon.social/tags/reliability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>reliability</span></a> <a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a></p><p><a href="https://realitybending.github.io/post/2024-03-18-signaltonoisemixed/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">realitybending.github.io/post/</span><span class="invisible">2024-03-18-signaltonoisemixed/</span></a></p>
💧🌏 Greg Cocks<p>Observations Reveal Changing Coastal Storm Extremes Around The United States<br>--<br><a href="https://doi.org/10.1038/s41558-025-02315-z" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1038/s41558-025-023</span><span class="invisible">15-z</span></a> &lt;-- shared paper<br>--<br><a href="https://techhub.social/tags/GIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GIS</span></a> <a href="https://techhub.social/tags/spatial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spatial</span></a> <a href="https://techhub.social/tags/mapping" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mapping</span></a> <a href="https://techhub.social/tags/extremeweather" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>extremeweather</span></a> <a href="https://techhub.social/tags/coast" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>coast</span></a> <a href="https://techhub.social/tags/coastal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>coastal</span></a> <a href="https://techhub.social/tags/spatialanalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spatialanalysis</span></a> <a href="https://techhub.social/tags/spatiotemporal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spatiotemporal</span></a> <a href="https://techhub.social/tags/model" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>model</span></a> <a href="https://techhub.social/tags/modeling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modeling</span></a> <a href="https://techhub.social/tags/communities" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>communities</span></a> <a href="https://techhub.social/tags/publicsafety" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>publicsafety</span></a> <a href="https://techhub.social/tags/climatechange" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>climatechange</span></a> <a href="https://techhub.social/tags/stormsurge" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stormsurge</span></a> <a href="https://techhub.social/tags/USA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>USA</span></a> <a href="https://techhub.social/tags/flood" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>flood</span></a> <a href="https://techhub.social/tags/flooding" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>flooding</span></a> <a href="https://techhub.social/tags/risk" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>risk</span></a> <a href="https://techhub.social/tags/hazard" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hazard</span></a> <a href="https://techhub.social/tags/damage" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>damage</span></a> <a href="https://techhub.social/tags/infrastructure" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>infrastructure</span></a> <a href="https://techhub.social/tags/cost" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cost</span></a> <a href="https://techhub.social/tags/economics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>economics</span></a> <a href="https://techhub.social/tags/mitigation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mitigation</span></a> <a href="https://techhub.social/tags/insurance" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>insurance</span></a> <a href="https://techhub.social/tags/sealevel" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sealevel</span></a> <a href="https://techhub.social/tags/SLR" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SLR</span></a> <a href="https://techhub.social/tags/sealevelrise" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sealevelrise</span></a> <a href="https://techhub.social/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> <a href="https://techhub.social/tags/hierarchical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hierarchical</span></a> <a href="https://techhub.social/tags/framework" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>framework</span></a> <a href="https://techhub.social/tags/tideguage" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tideguage</span></a> <a href="https://techhub.social/tags/tide" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tide</span></a> <a href="https://techhub.social/tags/tidal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tidal</span></a> <a href="https://techhub.social/tags/water" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>water</span></a> <a href="https://techhub.social/tags/hydrology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hydrology</span></a> <a href="https://techhub.social/tags/hydrography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hydrography</span></a> <a href="https://techhub.social/tags/extremes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>extremes</span></a> <a href="https://techhub.social/tags/intensity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>intensity</span></a> <a href="https://techhub.social/tags/monitoring" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>monitoring</span></a></p>
JMLR<p>'DAGs as Minimal I-maps for the Induced Models of Causal Bayesian Networks under Conditioning', by Xiangdong Xie, Jiahua Guo, Yi Sun.</p><p><a href="http://jmlr.org/papers/v26/23-0002.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v26/23-0002.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/inference" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>inference</span></a> <a href="https://sigmoid.social/tags/causal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>causal</span></a> <a href="https://sigmoid.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #319 Small Sample Size Solutions [book]</p><p>Thoughts: This should just be the default text for psychologists, as most research fits the "small sample" label.</p><p><a href="https://mastodon.social/tags/smallsample" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>smallsample</span></a> <a href="https://mastodon.social/tags/book" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>book</span></a> <a href="https://mastodon.social/tags/guide" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>guide</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/permutation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>permutation</span></a> <a href="https://mastodon.social/tags/sem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sem</span></a> <a href="https://mastodon.social/tags/metaanalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>metaanalysis</span></a> <a href="https://mastodon.social/tags/nof1" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nof1</span></a> <a href="https://mastodon.social/tags/missingdata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>missingdata</span></a></p><p><a href="https://doi.org/10.4324/9780429273872" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">doi.org/10.4324/9780429273872</span><span class="invisible"></span></a></p>
PyMC developers<p>PyMC is in Google Summer of Code 2025!</p><p>We're excited to be part of <a href="https://bayes.club/tags/GSoC2025" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GSoC2025</span></a> under <span class="h-card" translate="no"><a href="https://mastodon.social/@NumFOCUS" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>NumFOCUS</span></a></span> If you're passionate about <a href="https://bayes.club/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> stats &amp; <a href="https://bayes.club/tags/OpenSource" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenSource</span></a>, this is your chance to contribute to <a href="https://bayes.club/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a>!</p><p>📅 Deadline: April 8, 18:00 UTC<br>🔗 Apply now: <a href="https://www.pymc.io/blog/blog_gsoc_2025_announcement.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">pymc.io/blog/blog_gsoc_2025_an</span><span class="invisible">nouncement.html</span></a></p>
Eric Schares<p>New paper! We develop a <a href="https://scholar.social/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> statistical model to better predict future publishing counts by an institution w/ a particular publisher and the associated <a href="https://scholar.social/tags/APCs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>APCs</span></a>. This is important because any <a href="https://scholar.social/tags/OpenAccess" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenAccess</span></a> negotiation depends heavily on the expected publication output.</p><p><a href="https://doi.org/10.1002/asi.24981" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">doi.org/10.1002/asi.24981</span><span class="invisible"></span></a></p>
pglpm<p><span class="h-card" translate="no"><a href="https://fosstodon.org/@Posit" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>Posit</span></a></span> </p><p>It's important to emphasize that "realistic-looking" data does *not* mean "realistic" data – especially high-dimensional data (unfortunately that post doesn't warn against this).</p><p>If one had an algorithm that generated realistic data for a given inference problem, it would mean that that inference problem had been solved. So: for educational purposes, why not. But for validation-like purposes, use with uttermost caution and at your own peril.</p><p><a href="https://c.im/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a> <a href="https://c.im/tags/statistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistics</span></a> <a href="https://c.im/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a></p>
Jakub Nowosad<p>The bayesEO package provides a Bayesian approach to post-processing ML-generated images. It refines class probabilities, removes outliers, and improves labeling for more accurate classification.</p><p>🔗 <a href="https://github.com/e-sensing/bayesEO/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/e-sensing/bayesEO/</span><span class="invisible"></span></a> </p><p><a href="https://fosstodon.org/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a> <a href="https://fosstodon.org/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MachineLearning</span></a> <a href="https://fosstodon.org/tags/RemoteSensing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RemoteSensing</span></a> <a href="https://fosstodon.org/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> <a href="https://fosstodon.org/tags/rspatial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rspatial</span></a></p>
pglpm<p>Happy Birthday, Laplace! 🎂 🪐 🎓 One of the first to use Bayesian probability theory in the modern way!</p><p>"One sees in this essay that the theory of probabilities is basically only common sense reduced to a calculus. It makes one estimate accurately what right-minded people feel by a sort of instinct, often without being able to give a reason for it. It leaves nothing arbitrary in the choice of opinions and of making up one's mind, every time one is able, by this means, to determine the most advantageous choice. Thereby, it becomes the most happy supplement to ignorance and to the weakness of the human mind. If one considers the analytical methods to which this theory has given rise, the truth of the principles that serve as the groundwork, the subtle and delicate logic needed to use them in the solution of the problems, the public-benefit businesses that depend on it, and the extension that it has received and may still receive from its application to the most important questions of natural philosophy and the moral sciences; if one observes also that even in matters which cannot be handled by the calculus, it gives the best rough estimates to guide us in our judgements, and that it teaches us to guard ourselves from the illusions which often mislead us, one will see that there is no science at all more worthy of our consideration, and that it would be a most useful part of the system of public education." </p><p>*Philosophical Essay on Probabilities*, 1814 &lt;<a href="https://doi.org/10.1007/978-1-4612-4184-3" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1007/978-1-4612-418</span><span class="invisible">4-3</span></a>&gt;</p><p><a href="https://c.im/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a> <a href="https://c.im/tags/probability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probability</span></a> <a href="https://c.im/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://c.im/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #299 The role of "max_treedepth" in No-U-Turn?</p><p>Thoughts: Once you start using more complex models you will run into issues at some point; this is one; good solution guide.</p><p><a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/modeling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modeling</span></a> <a href="https://mastodon.social/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a> <a href="https://mastodon.social/tags/issues" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>issues</span></a> <a href="https://mastodon.social/tags/solutions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>solutions</span></a> <a href="https://mastodon.social/tags/stan" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stan</span></a> <a href="https://mastodon.social/tags/forum" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>forum</span></a></p><p><a href="https://discourse.mc-stan.org/t/the-role-of-max-treedepth-in-no-u-turn/24155" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discourse.mc-stan.org/t/the-ro</span><span class="invisible">le-of-max-treedepth-in-no-u-turn/24155</span></a></p>