Follow

that there are infinitely many solutions to the equation \(xy = x + y\).
i.e. \[1 = \frac{1}{x} + \frac{1}{y}\]
Let \(x = c/a\) and \(y = c/b\). We have \(1 = \frac{a}{c} + \frac{b}{c} = \frac{a + b}{c}\)
\(\iff c = a + b\).
So \(xy = x + y\) is satisfied when \(x = c/a\), \(y = c/b\) where \(c = a + b\), for any value of a and b.

e.g.: \(\frac{37}{15} + \frac{37}{22} = \frac{37}{15} \times \frac{37}{22} = \frac{1369}{330}\).

Sign in to participate in the conversation
Mathstodon

The social network of the future: No ads, no corporate surveillance, ethical design, and decentralization! Own your data with Mastodon!