Show more

Current status: testing TLSv1.3 and setting some HTTP headers.

My previous toot is intended to verify my identity with Keybase. So I must thank @ryanmaynard@mastodon.cloud for this post. ryanmaynard.co/mastodon-keybas

Verifying myself: I am daniphii on Keybase.io and @DaniPhii@mathstodon.xyz on Mastodon. 

BEGIN KEYBASE SALTPACK SIGNED MESSAGE. kXR7VktZdyH7rvq v5weRa0zkJofDRb iOSLBmwJZYCU7UY t09r25dh6RWZjMZ YnRibGf5SF6yihf K4leMfe8Cf5MF2s vVaUCDcFGkso7A6 VNRr7ijbkNu8chX DMndgJwAqLUCstg DJBU2I4bHTzBZDO KMKjkpY3gfF3lGP 9SfgmUosMnae9st EMvWV3PSlp6DRCB a0odqZa88oMwIx2 m4xbh7gEPFYFjYs TPiU2OEd1Keuftw 9Jpessw6DkGtxgQ IrWOyL2PkWk3xxG dXaEnMbtgTbUlDG 3uEF6hZPa34fBHV m346. END KEYBASE SALTPACK SIGNED MESSAGE.

Hi everybody! I'm back over here! 🙂

Some days ago I had LineageOS for microG installed on my BQ Aquaris M5 and I gotta say I'm glad I did so. lineage.microg.org/

Interesting…
\[\begin{align}\sqrt[3]{50+\sqrt{2527}}&+\sqrt[3]{50-\sqrt{2527}}=4\\
\sqrt[3]{85+\sqrt{7252}}&+\sqrt[3]{85-\sqrt{7252}}=5\\
\sqrt[3]{44+\sqrt{1944}}&+\sqrt[3]{44-\sqrt{1944}}=4\\
\sqrt[3]{1414+\sqrt{1999404}}&+\sqrt[3]{1414-\sqrt{1999404}}=14\\
\sqrt[3]{3515+\sqrt{12355252}}&+\sqrt[3]{3515-\sqrt{12355252}}=19\\
\sqrt[3]{171710+\sqrt{29484324108}}&+\sqrt[3]{171710-\sqrt{29484324108}}=70\\
\sqrt[3]{3015103+\sqrt{9090846100636}}&+\sqrt[3]{3015103-\sqrt{9090846100636}}=182\end{align}\]

I'm looking for identities like this one that I've already found:
\[\sqrt[3]{4n^3+6n+\sqrt{16n^6+48n^4+36n^2+8}}+\sqrt[3]{4n^3+6n-\sqrt{16n^6+48n^4+36n^2+8}}=2n\]

Dani boosted

I'm sooo tired. I'm teaching more maths tomorrow. Good night.

I've got \(2^3\), \(3^3\), \(4^3\), \(5^3\), \(6^3\) and \(7^3\) Rubik's cubes. I wanna get the next one. amazon.co.uk/dp/B01N5ECDEU

I got those formulae knowing that \((a+b)^2\) \(+\) \((a-b)^2\) \(=\) \(\sum_{k=0}^{\frac{n - (n \bmod 2)}{2}}\) \(2\) \({n \choose 2k}\) \(a^{n-2k}\) \(b^{2k}\).

Show thread

\[{P_{n}}^6 = \frac{5 \cdot (-1)^{n + 1}}{128} + \sum_{k=0}^{\frac{n - (n \bmod 2)}{2}} {n \choose 2k} \cdot \Bigg(\frac{99^n \cdot 9800^k}{256 \cdot 9801^k} - \frac{3 \cdot (-17)^n \cdot 288^k}{128 \cdot 289^k} + \frac{3^{n+1} \cdot 5 \cdot 8^k}{256 \cdot 9^k}\Bigg) \]

Show thread

Currently building LineageOS 13.0 for bq Aquaris M5.

Tetration catches my attention. Numbers grow so fast. 🤔 

\[\begin{align}{^{3}1}=&\hspace{4px}1\\{^{3}2}=&\hspace{4px}16\\{^{3}3}=&\hspace{4px}7625597484987\\{^{3}4}=&\hspace{4px}13407807929942597099574024\\&\hspace{4px}99820584612747936582059239\\&\hspace{4px}33777235614437217640300735\\&\hspace{4px}46976801874298166903427690\\&\hspace{4px}03185818648605085375388281\\&\hspace{4px}1946569946433649006084096\end{align}\]

Show thread

🤔 

\[\begin{align}{^{2}1}&=1\\{^{2}2}&=4\\{^{2}3}&=27\\{^{2}4}&=256\\{^{2}5}&=3125\\{^{2}6}&=46656\\{^{2}7}&=823543\\{^{2}8}&=16777216\\{^{2}9}&=387420489\\{^{2}10}&=10000000000\\{^{2}11}&=285311670611\\{^{2}12}&=8916100448256\\{^{2}13}&=302875106592253\\{^{2}14}&=11112006825558016\\{^{2}15}&=437893890380859375\\{^{2}16}&=18446744073709551616\\{^{2}17}&=827240261886336764177\\{^{2}18}&=39346408075296537575424\\{^{2}19}&=1978419655660313589123979\\{^{2}20}&=104857600000000000000000000\end{align}\]

Show more
Mathstodon

The social network of the future: No ads, no corporate surveillance, ethical design, and decentralization! Own your data with Mastodon!