Today I've been playing around with maths looking for patterns and formulae for even powers of Pell numbers.

Letting $$P_{n}$$ be the $$n$$th Pell number:

${P_{n}}^2=\frac{(-1)^{n+1}}{4}+\sum_{k=0}^{\frac{n-(n\bmod2)}{2}}{n\choose2k}\cdot\Bigg(\frac{3^n\cdot8^k}{4\cdot9^k}\Bigg)$${P_{n}}^4=\frac{3}{32}+\sum_{k=0}^{\frac{n-(n\bmod2)}{2}}{n\choose2k}\cdot\Bigg(\frac{17^n\cdot288^k}{32\cdot289^k}-\frac{(-3)^n\cdot8^k}{8\cdot9^k}\Bigg)$

${P_{n}}^6 = \frac{5 \cdot (-1)^{n + 1}}{128} + \sum_{k=0}^{\frac{n - (n \bmod 2)}{2}} {n \choose 2k} \cdot \Bigg(\frac{99^n \cdot 9800^k}{256 \cdot 9801^k} - \frac{3 \cdot (-17)^n \cdot 288^k}{128 \cdot 289^k} + \frac{3^{n+1} \cdot 5 \cdot 8^k}{256 \cdot 9^k}\Bigg)$

· · Web · · ·

I got those formulae knowing that $$(a+b)^2$$ $$+$$ $$(a-b)^2$$ $$=$$ $$\sum_{k=0}^{\frac{n - (n \bmod 2)}{2}}$$ $$2$$ $${n \choose 2k}$$ $$a^{n-2k}$$ $$b^{2k}$$.

The social network of the future: No ads, no corporate surveillance, ethical design, and decentralization! Own your data with Mastodon!